Skip to main content
Log in

A geometric optimization method for the trajectory planning of flexible manipulators

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Lightweight and flexible robots offer an interesting answer to industrial needs for safety and efficiency. The control of such systems should be able to deal properly with the flexible behavior in the links and the joints. In this paper, a feedforward control action is computed by solving the inverse dynamics of the system. Flexibility in the system is modeled using finite elements formulated in the local frame. The inverse problem is then solved using a constrained optimization formulation. This local frame representation reduces the nonlinearity in the equations of motion and improves the convergence of the numerical scheme. To illustrate the method, numerical examples of a serial and a parallel 3D robot are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  2. Bastos, G.J.: Contribution to the inverse dynamics of flexible manipulators. Ph.D. thesis, University of Liège (2013)

  3. Bastos, G.J., Seifried, R., Brüls, O.: Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach. Multibody Syst. Dyn. 30, 359–376 (2013). https://doi.org/10.1007/s11044-013-9361-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Bastos, G.J., Seifried, R., Brüls, O.: Analysis of stable model inversion methods for constrained underactuated mechanical systems. Mech. Mach. Theory 111, 99–117 (2017)

    Article  Google Scholar 

  5. Bauchau, O.: Flexible Multibody Dynamics. Springer, Berlin (2011)

    Book  Google Scholar 

  6. Betts, J.T.: Practical Method for Optimal Control and Estimation Using Nonlinear Programming. Advances in Design and Control. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  7. Blajer, W., Kolodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11, 343–364 (2004)

    Article  MathSciNet  Google Scholar 

  8. Book, W.J.: Recursive Lagrangian dynamics of flexible manipulator arms. Int. J. Robot. Res. 3(3), 87–101 (1984)

    Article  MathSciNet  Google Scholar 

  9. Bottasso, C.L., Croce, A.: Optimal control of multibody systems using an energy preserving direct transcription method. Multibody Syst. Dyn. 12, 17–45 (2004)

    Article  MathSciNet  Google Scholar 

  10. Bottasso, C.L., Croce, A., Ghezzi, L., Faure, P.: On the solution of inverse dynamics and trajectory optimization problems for multibody systems. Multibody Syst. Dyn. 11, 1–22 (2004)

    Article  MathSciNet  Google Scholar 

  11. Brüls, O., Arnold, M., Cardona, A.: Two Lie group formulations for dynamic multibody systems with large rotations. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, DC, USA (2011)

    Google Scholar 

  12. Brüls, O., Bastos, G.J., Seifried, R.: A stable inversion method for feedforward control of constrained flexible multibody systems. J. Comput. Nonlinear Dyn. 9, 011014 (2014). https://doi.org/10.1115/1.4025476

    Article  Google Scholar 

  13. Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012)

    Article  Google Scholar 

  14. Cannon, R., Schmitz, E.: Initial experiments on the end-point control of a flexible one-link robot. Int. J. Robot. Res. 3(3), 62–75 (1984)

    Article  Google Scholar 

  15. De Luca, A.: Feedforward/feedback laws for the control of flexible robots. In: Proceedings of the IEEE International Conference on Robotics & Automation (2000)

    Google Scholar 

  16. Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41(7), 930–942 (1996)

    Article  MathSciNet  Google Scholar 

  17. Franke, R., Malzahn, J., Nierobisch, T., Hoffmann, F., Bertram, T.: Vibration control of a multi-link flexible robot arm with fiber-Bragg-grating sensors. In: Proceedings of IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  18. Geradin, M., Cardona, A.: Flexible Multibody Dynamics: a Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  19. Kwon, D.S., Book, W.J.: A time-domain inverse dynamic tracking control of a single link flexible manipulator. J. Dyn. Syst. Meas. Control 116, 193–200 (1994)

    Article  Google Scholar 

  20. Lismonde, A., Sonneville, V., Brüls, O.: Trajectory planning of soft link robots with improved intrinsic safety. In: Proceedings of the 20th World Congress of the International Federation of Automatic Control (2017)

    Google Scholar 

  21. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  22. Malzahn, J., Ruderman, M., Phung, A.S., Hoffmann, F., Bertram, T.: Input shaping and strain gauge feedback vibration control of an elastic robotic arm. In: Proceedings of IEEE Conference on Control and Fault Tolerant Systems (2010)

    Google Scholar 

  23. Manara, S., Gabiccini, M., Artoni, A., Diehl, M.: On the integration of singularity-free representations of SO(3) for direct optimal control. Nonlinear Dyn. 90(2), 1223–1241 (2017)

    Article  MathSciNet  Google Scholar 

  24. Martins, J., Botto, M.A., Costa, J.S.D.: Modeling of flexible beams for robotic manipulators. Multibody Syst. Dyn. 7, 79–100 (2002)

    Article  Google Scholar 

  25. Moberg, S.: Modeling and control of flexible manipulators. Ph.D. thesis, Linköping University (2010)

  26. Moberg, S., Hanssen, S.: Inverse dynamics of flexible manipulators. In: Proceedings of the Multibody Dynamics, ECCOMAS Thematic Conference (2009)

    Google Scholar 

  27. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  28. Seifried, R.: Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design. Solid Mechanics and Its Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  29. Seifried, R., Eberhard, P.: Design of feed-forward control for underactuated multibody systems with kinematic redundancy. In: Motion and Vibration Control: Selected Papers from MOVIC 2008 (2009)

    Google Scholar 

  30. Singer, N., Seering, W.P.: Preshaping command inputs to reduce system vibration. J. Dyn. Syst. Meas. Control 112, 76–82 (1990). https://doi.org/10.1115/1.2894142

    Article  Google Scholar 

  31. Solis, J.F.P., Navarro, G.S., Linares, R.C.: Modeling and tip position control of a flexible link robot: experimental results. Comput. Sist. 12(4), 421–435 (2009)

    Google Scholar 

  32. Sonneville, V.: A geometric local frame approach for flexible multibody systems. Ph.D. thesis, University of Liège (2015)

  33. Sonneville, V., Brüls, O.: A formulation on the special Euclidean group for dynamic analysis of multibody systems. J. Comput. Nonlinear Dyn. 9, 041002 (2014). https://doi.org/10.1115/1.4026569

    Article  MATH  Google Scholar 

  34. Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014). https://doi.org/10.1016/j.cma.2013.10.008

    Article  MathSciNet  MATH  Google Scholar 

  35. Staufer, P., Gattringer, H.: Passivity-based tracking control of a flexible link robot. In: Multibody System Dynamics, Robotic and Control, pp. 95–112. Springer, Vienna (2013)

    Chapter  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the Belgian Fund for Research training in Industry and Agriculture for its financial support (FRIA grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Lismonde.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author would like to acknowledge the Belgian Fund for Research training in Industry and Agriculture for its financial support (FRIA grant)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lismonde, A., Sonneville, V. & Brüls, O. A geometric optimization method for the trajectory planning of flexible manipulators. Multibody Syst Dyn 47, 347–362 (2019). https://doi.org/10.1007/s11044-019-09695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09695-z

Keywords

Navigation