Skip to main content
Log in

ANFIS-based an adaptive continuous sliding-mode controller for robot manipulators in operational space

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the task-space robust trajectory tracking control problem for robot manipulators in the presence of uncertainties and external disturbances. First, a discontinuous sliding-mode controller-based inverse dynamics control strategy (IDSMC) with discontinuous robust control action is synthesized. Second, an adaptive inverse dynamics controller based on continuous sliding-mode control (AIDCSMC) is designed, in which the adaptation laws are addressed to compensate for the unknown parameters of the dynamical model of robot manipulators. The global stability of the closed-loop control system is proven using the Lyapunov theorem and the proposed AIDCSMC controller is further proven to guarantee convergence to zero of both trajectory tracking error and error rate. Finally, a hybrid intelligent neuro-fuzzy adaptive fuzzy inference system (ANFIS)-based adaptive inverse dynamics controller with continuous sliding-mode control (ANFIS-AIDCSMC) is adopted. Numerical simulations using the dynamic model of rigid robot manipulators with uncertainties show the effectiveness of the presented approach in simple and complex trajectory tracking problems. The simulation results indicate that the control performance of the robot system is satisfactory, and the proposed approach can achieve favorable tracking performance and it is robust with regard to uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Alavandar, S., Nigam, M.J.: Comparative analysis of conventional and soft computing based control strategies for robot manipulators with uncertainties. Int. J. Comput. Cogn. 7(1), 52–61 (2009)

    Google Scholar 

  2. Barambones, O., Etxebarria, V.: Robust adaptive control for robot manipulator with un-modeled dynamics. Int. J. Cybern. Syst. 31(1), 67–86 (2000)

    Article  MATH  Google Scholar 

  3. Barambones, O., Etxebarria, V.: Robust neural control of robot manipulators. Automatica 38(2), 235–242 (2002)

    Article  MATH  Google Scholar 

  4. Capisani, L., Ferrara, A., Magnani, L.: Second order sliding mode motion control of rigid robot manipulators. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 12–14 (2007)

    Google Scholar 

  5. Cheah, C., Kawamura, S., Arimoto, S.: Stability of hybrid position and force control for robotic manipulator with kinematics and dynamics uncertainties. Automatica 39(5), 847–855 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheah, C., Liu, C., Slotine, J.: Approximate Jacobian adaptive control for robot manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 3075–3080 (2004)

    Google Scholar 

  7. Cheah, C., Liaw, H.: Inverse Jacobian regulator with gravity compensation: stability and experiment. IEEE Trans. Robot. 21(4), 741–747 (2005)

    Article  Google Scholar 

  8. Cheah, C., Hirano, M., Kawamura, S., Arimoto, S.: Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans. Robot. Autom. 19(4), 692–702 (2003)

    Article  Google Scholar 

  9. Cheng, L., Hou, Z., Tan, M.: Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica 45(10), 2312–2318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications, 1st edn. Taylor & Francis, London (1998)

    Book  MATH  Google Scholar 

  11. Hacioglu, Y., Arslan, Y., Yazig, N.: MIMO fuzzy sliding mode controlled dual arm robot in load transportation. J. Franklin Inst. 348(8), 1886–1902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ho, H., Wong, Y., Rad, A.: Robust fuzzy tracking control for robotic manipulators. Simul. Model. Pract. Theory 15(7), 801–816 (2007)

    Article  Google Scholar 

  13. Kara, S., Dasb, S., Ghosh, P.: Applications of neuro fuzzy systems: a brief review and future outline. Appl. Soft Comput. 15(20), 243–259 (2014)

    Article  Google Scholar 

  14. Lian, R.: Enhanced adaptive grey-prediction self-organizing fuzzy sliding-mode controller for robotic systems. Inf. Sci. 236(14), 186–204 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, H., Zhang, T.: Adaptive neural network finite-time control for uncertain robotic manipulators. J. Intell. Robot. Syst. 134(6), 1–15 (2012)

    MathSciNet  Google Scholar 

  16. Liu, H., Zhang, T.: Fuzzy sliding mode control of robotic manipulators with kinematic and dynamic uncertainties. J. Dyn. Syst. Meas. Control 134(6), 061007 (2012)

    Article  MathSciNet  Google Scholar 

  17. Luca, M., Antonella, F., Lorenza, M.: Second order sliding mode motion control of rigid robot manipulators. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, December 12–14, 2007, pp. 3883–3888 (2007).

    Google Scholar 

  18. Melin, P., Castillo, O.: Intelligent control of a stepping motor drive using an adaptive neuro-fuzzy inference system. Inf. Sci. 170(8), 133–150 (2005)

    Article  Google Scholar 

  19. Moreno-Valenzuela, J., Gonzlez-Hernndez, L.: Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity. ISA Trans. 50(1), 131–140 (2010)

    Article  Google Scholar 

  20. Siciliano, B., Sciavicco, L., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin/Heidelberg (2008)

    Book  MATH  Google Scholar 

  21. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics Modelling, Planning and Control. Springer, London (2009)

    Google Scholar 

  22. Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14), 2377–2384 (2011)

    Article  Google Scholar 

  23. Torres, S., Méndez, J., Acosta, L., Becerra, V.: On improving the performance in robust controllers for robot manipulators with parametric disturbances. Control Eng. Pract. 15(5), 557–566 (2007)

    Article  Google Scholar 

  24. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-Mechanical Systems, 2nd edn. CRC press/Taylor & Francis, Boca Raton/London (2017)

    Google Scholar 

  25. Wang, W., Xie, Y.: Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics. Automatica 45(9), 2114–2119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yazarel, Y., Cheah, C.: Task-space adaptive control of robotic manipulators with uncertainties in gravity regressor matrix and kinematics. IEEE Trans. Autom. Control 47(9), 1580–1585 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yuzheng, G., Peng-Yung, W.: An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 33(2), 149–159 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael M. Elawady.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Currently, Wael M. Elawady is lecturer in the Higher Institute of Engineering and Technology in Kafr Elsheikh (HIET)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asar, M.F., Elawady, W.M. & Sarhan, A.M. ANFIS-based an adaptive continuous sliding-mode controller for robot manipulators in operational space. Multibody Syst Dyn 47, 95–115 (2019). https://doi.org/10.1007/s11044-019-09681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09681-5

Keywords

Navigation