Skip to main content
Log in

Flexible multibody modeling of reeving systems including transverse vibrations

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a discretization procedure for the flexible multibody modeling of reeving systems. Reeving systems are assumed to include a set of rigid bodies connected by wire ropes using a set of sheaves and reels. The method is capable to model the deformation of the varying-length wire-rope spans. Wire ropes are assumed to deform axially, transversally and in torsion. This paper shows the capability of the presented method to model transverse vibrations. The discretization procedure uses a combination of absolute position coordinates, relative-transverse deformation coordinates and longitudinal material coordinates. Each wire-rope span is modeled using a single two-noded element under an arbitrary Lagrangian–Eulerian approach. The discretization method is validated using analytical and numerical reference solutions found in the literature that describe the dynamics of varying-length strings. In addition, the dynamics of a three-dimensional tower crane is simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pevrot, A.H., Goulois, A.M.: Analysis of cable structure. Comput. Struct. 10(5), 805–813 (1979)

    Article  Google Scholar 

  2. Nawrocki, A., Labrosse, M.: Finite element model for simple straight wire rope strands. Comput. Struct. 77(4), 345–359 (2000)

    Article  Google Scholar 

  3. Costello, G.A.: Theory of Wire Rope. Springer, New York (1990)

    Book  Google Scholar 

  4. Feyrer, K.: Wire Ropes. Tension, Endurance, Reliability. Springer, Berlin (2007)

    Book  Google Scholar 

  5. Kamman, J., Huston, R.: Multibody dynamics modelling of variable length cable systems. Multibody Syst. Dyn. 5(3), 211–221 (2001)

    Article  MATH  Google Scholar 

  6. Rouvinen, A., Lehtinen, T., Korkealaakso, P.: Container gantry crane simulator for operator training. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219(4), 325–336 (2005)

    Google Scholar 

  7. Lugrís, U., Escalona, J.L., Dopico, D., Cuadrado, J.: Efficient and accurate simulation of the rope–sheave interaction in weight-lifting machines. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 225(4), 331–343 (2011), Special Issue Paper

    Google Scholar 

  8. Lugrís, U., Naya, M.A., Pérez, J.A., Cuadrado, J.: Implementation and efficiency of two geometric stiffening approaches. Multibody Syst. Dyn. 20(2), 147–161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31(2), 167–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sugiyama, H., Mikkola, A.M., Shabana, A.A.: A non-incremental nonlinear finite element solution for cable problems. J. Mech. Des. 125(4), 746–756 (2003)

    Article  Google Scholar 

  11. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  12. Dufva, K., Kerkkänen, K., Maqueda, L.G., Shabana, A.A.: Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dyn. 48(4), 449–466 (2007)

    Article  MATH  Google Scholar 

  13. Kerkkänen, K., García-Vallejo, D., Mikkola, A.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43(3), 239–256 (2006)

    Article  MATH  Google Scholar 

  14. Stangl, M., Gerstmayr, J., Irschik, H.: A large deformation finite element for pipes conveying fluid based on the absolute nodal coordinate formulation. In: ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2007)

    Google Scholar 

  15. Pechstein, A., Gerstmayr, J.: A Lagrange–Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 30(3), 343–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hong, D., Ren, G.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Escalona, J.L.: An arbitrary Lagrangian–Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach. Theory 112, 1–21 (2017)

    Article  Google Scholar 

  18. Irschik, H., Holl, H.J.: The equations of Lagrange written for a non-material volume. Acta Mech. 153(3), 231–248 (2002)

    Article  MATH  Google Scholar 

  19. Butikov, E.I.: Misconceptions about the energy of waves in a strained string. Phys. Scr. 86(3), 035403 (2012), 7 pp.

    Article  Google Scholar 

  20. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)

    Article  Google Scholar 

  21. Balazs, N.L.: On the solution of the wave equation with moving boundaries. J. Math. Anal. Appl. 3(3), 472–484 (1961)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study is partly funded by the Academy of Finland, with decision no. 285065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Escalona.

Appendix A: Generalized inertia vector based on simplified velocity expression

Appendix A: Generalized inertia vector based on simplified velocity expression

The generalized momentum is obtained as the partial derivative of the expression of the kinetic energy given in Eq. (16) with respect to the generalized velocities, as follows:

$$ \frac{\partial T}{\partial\dot{\mathbf{q}}} = \left [ \textstyle\begin{array}{c} \mathbf{M}_{a}\dot{\mathbf{q}}_{a} + \mathbf{M}_{am}\dot{\mathbf{q}}_{m} + \mathbf{Q}_{a}\mathbf{q}_{a} \\ \mathbf{M}_{m}\dot{\mathbf{q}}_{m} + \mathbf{M}_{am}^{T}\dot{\mathbf{q}}_{a} + \mathbf{M}_{am}^{T}\mathbf{q}_{a} \\ \mathbf{M}_{as}^{T}\dot{\mathbf{q}}_{a} + \mathbf{Q}_{sa}\dot{\mathbf{q}}_{a} \end{array}\displaystyle \right ]. $$
(56)

The first term in Lagrange equations can be obtained:

$$\begin{aligned} \frac{d}{dt} \biggl( \frac{\partial T}{\partial\dot{\mathbf{q}}} \biggr) =& \left [ \textstyle\begin{array}{c} \mathbf{M}_{a}\ddot{\mathbf{q}}_{a} + \mathbf{M}_{am}\ddot{\mathbf{q}}_{m} \\ \mathbf{M}_{m}\ddot{\mathbf{q}}_{m} + \mathbf{M}_{am}^{T}\ddot{\mathbf{q}}_{a} \\ \mathbf{M}_{as}^{T}\ddot{\mathbf{q}}_{a} \end{array}\displaystyle \right ] + \left [ \textstyle\begin{array}{c} \mathbf{Q}_{a}\dot{\mathbf{q}}_{a} \\ \mathbf{Q}_{am}^{T}\dot{\mathbf{q}}_{a} \\ \mathbf{Q}_{sa}\dot{\mathbf{q}}_{a} \end{array}\displaystyle \right ] \\ &{}+ \left [ \textstyle\begin{array}{c} \frac{\partial ( \mathbf{M}_{a}\dot{\mathbf{q}}_{a} )}{\partial \mathbf{q}_{s}}\dot{\mathbf{q}}_{s} + \frac{\partial ( \mathbf{M}_{am}\dot{\mathbf{q}}_{m} )}{\partial \mathbf{q}_{s}}\dot{\mathbf{q}}_{s} + \frac{\partial ( \mathbf{M}_{am}\dot{\mathbf{q}}_{m} )}{\partial \mathbf{q}_{a}}\dot{\mathbf{q}}_{a} + \mathbf{M}_{as}\ddot{\mathbf{q}}_{s} \\ \frac{\partial ( \mathbf{M}_{m}\dot{\mathbf{q}}_{m} )}{\partial\mathbf{q}_{s}}\dot{\mathbf{q}}_{s} + \frac{\partial ( \mathbf{M}_{am}^{T}\dot{\mathbf{q}}_{a} )}{\partial\mathbf{q}_{s}}\dot{\mathbf{q}}_{s} + \frac{\partial ( \mathbf{M}_{am}^{T}\dot{\mathbf{q}}_{a} )}{\partial\mathbf{q}_{a}}\dot{\mathbf{q}}_{a} + \frac{\partial ( \mathbf{Q}_{am}^{T}\mathbf{q}_{a} )}{\partial\mathbf{q}_{a}}\dot{\mathbf{q}}_{a} + \mathbf{M}_{ms}\ddot{\mathbf{q}}_{s} \\ \frac{\partial ( \mathbf{M}_{as}^{T}\dot{\mathbf{q}}_{a} )}{\partial\mathbf{q}_{a}}\dot{\mathbf{q}}_{a} + \frac{\partial ( \mathbf{Q}_{sa}\mathbf{q}_{a} )}{\partial\mathbf{q}_{s}}\dot{\mathbf{q}}_{s} + \frac{\partial ( \mathbf{Q}_{sa}\mathbf{q}_{a} )}{\partial\mathbf{q}_{a}}\dot{\mathbf{q}}_{a} + \mathbf{M}_{s}\ddot{\mathbf{q}}_{s} \end{array}\displaystyle \right ], \end{aligned}$$
(57)

where the terms on the r.h.s. which are proportional to the generalized accelerations are already accounted for in the generalized inertia force vector \(\mathbf{M}\ddot{\mathbf{q}}\). The second term in Lagrange equations can be obtained:

$$ \frac{\partial T}{\partial\mathbf{q}} = \left [ \textstyle\begin{array}{c} \dot{\mathbf{q}}_{a}^{T}\frac{\partial ( \mathbf{M}_{am}\dot{\mathbf{q}}_{m} )}{\partial \mathbf{q}_{a}} + \mathbf{q}_{a}^{T}\frac{\partial ( \mathbf{Q}_{am}\dot{\mathbf{q}}_{m} )}{\partial \mathbf{q}_{a}} \\ \mathbf{0} \\ \dot{\mathbf{q}}_{a}^{T} ( \frac{1}{2}\frac{\partial ( \mathbf{M}_{a}\dot{\mathbf{q}}_{a} )}{\partial \mathbf{q}_{s}} + \frac{\partial ( \mathbf{M}_{am}\dot{\mathbf{q}}_{m} )}{\partial \mathbf{q}_{s}} + \frac{1}{2}\frac{\partial ( \mathbf{P}_{a}\mathbf{q}_{a} )}{\partial\mathbf{q}_{s}} ) + \frac{1}{2}\dot{\mathbf{q}}_{m}^{T}\frac{\partial ( \mathbf{M}_{m}\dot{\mathbf{q}}_{m} )}{\partial \mathbf{q}_{s}} \end{array}\displaystyle \right ]. $$
(58)

The generalized quadratic-velocity inertia vector \(\mathbf{Q} _{v}\) collects all inertia terms which are not proportional to the generalized accelerations, as follows:

$$ \mathbf{Q}_{v} = \frac{\partial T}{\partial\mathbf{q}} - \biggl( \frac{d}{dt} \biggl( \frac{\partial T}{\partial\dot{\mathbf{q}}} \biggr) - \mathbf{M}\ddot{\mathbf{q}} \biggr). $$
(59)

Substituting Eqs. (58), (57) and (18) into (59) and rearranging yields

$$\begin{aligned} \mathbf{Q}_{v} =& \left [ \textstyle\begin{array}{c} ( \frac{\partial ( \mathbf{M}_{am}\dot{\mathbf{q}}_{m} )}{\partial \mathbf{q}_{a}} )^{T}\dot{\mathbf{q}}_{a} + ( \frac{\partial ( \mathbf{Q}_{am}\dot{\mathbf{q}}_{m} )}{\partial\mathbf{q}_{a}} )^{T}\mathbf{q}_{a} \\ \mathbf{0} \\ ( \frac{\partial ( \frac{1}{2}\mathbf{M}_{a}\dot{\mathbf{q}}_{a} + \mathbf{M}_{am}\dot{\mathbf{q}}_{m} + \frac{1}{2}\mathbf{P}_{a}\mathbf{q}_{a} )}{\partial \mathbf{q}_{s}} )^{T}\dot{\mathbf{q}}_{a} + \frac{1}{2} ( \frac{\partial\mathbf{M}_{m}\dot{\mathbf{q}}_{m}}{\partial \mathbf{q}_{s}} )^{T}\dot{\mathbf{q}}_{m} \end{array}\displaystyle \right ] \\ &{}+ \left [ \textstyle\begin{array}{c} - ( \mathbf{Q}_{a}\dot{\mathbf{q}}_{a} + \frac{\partial ( \mathbf{M}_{a}\dot{\mathbf{q}}_{a} + \mathbf{M}_{am}\dot{\mathbf{q}}_{m} )}{\partial \mathbf{q}_{s}}\dot{\mathbf{q}}_{s} + \frac{\partial ( \mathbf{M}_{am}\dot{\mathbf{q}}_{m} )}{\partial \mathbf{q}_{a}}\dot{\mathbf{q}}_{a} ) \\ - ( \mathbf{Q}_{am}^{T}\dot{\mathbf{q}}_{a} + \frac{\partial ( \mathbf{M}_{m}\dot{\mathbf{q}}_{m} + \mathbf{M}_{am}^{T}\dot{\mathbf{q}}_{a} )}{\partial \mathbf{q}_{s}}\dot{\mathbf{q}}_{s} + \frac{\partial ( \mathbf{M}_{am}^{T}\dot{\mathbf{q}}_{a} + \mathbf{Q}_{am}^{T}\mathbf{q}_{a} )}{\partial \mathbf{q}_{a}}\dot{\mathbf{q}}_{a} ) \\ - ( \mathbf{Q}_{sa}\dot{\mathbf{q}}_{a} + \frac{\partial ( \mathbf{Q}_{sa}\mathbf{q}_{a} )}{\partial \mathbf{q}_{s}}\dot{\mathbf{q}}_{s} + \frac{\partial ( \mathbf{M}_{as}^{T}\dot{\mathbf{q}}_{a} + \mathbf{Q}_{sa}\mathbf{q}_{a} )}{\partial \mathbf{q}_{a}}\dot{\mathbf{q}}_{a} ) \end{array}\displaystyle \right ]. \end{aligned}$$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escalona, J.L., Orzechowski, G. & Mikkola, A.M. Flexible multibody modeling of reeving systems including transverse vibrations. Multibody Syst Dyn 44, 107–133 (2018). https://doi.org/10.1007/s11044-018-9619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-9619-6

Keywords

Navigation