Skip to main content
Log in

A path following method for identifying static equilibrium in multi-body-dynamic systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Determining states of static equilibrium for multi-body-dynamic (MBD) systems can be challenging and may result in convergence failure for nonlinear static solvers. Analysts are often faced with uncertainty in regards to the values of candidate equilibrium states or whether a state of minimum potential energy was found. In the event of static solver failure or uncertainty with regards to a candidate solution, equilibrium could be obtained through a dynamic simulation which may require the addition of artificial damping. However, this method can have significant computational expense as compared to static solution procedures. Using MBD systems representing a pendulum, two variations of a spring supported arch, and a seven-body mechanism, arc-length solvers were found suitable for identifying equilibrium states through a robust production of static solution curves thereby avoiding dynamic simulation. Using these examples, a procedure for finding the correct equilibrium state for general systems is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Rose, G., Nguyen, D., Newman, B.: Implementing an arc-length method for a robust approach in solving systems of nonlinear equations. In: IEEE Southeast Conference (2016)

    Google Scholar 

  2. Wempner, G.A.: Discrete approximations related to nonlinear theories of solids. Int. J. Solids Struct. 7, 1581–1599 (1971)

    Article  MATH  Google Scholar 

  3. Riks, E.: An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15, 529–551 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crisfield, M.A.: A fast incremental/iterative solution procedure that handles snap-through. Comput. Struct. 13, 55–62 (1981)

    Article  MATH  Google Scholar 

  5. Meirovitch, L.: Methods of Analytical Dynamics. Dover, New York (2003)

    MATH  Google Scholar 

  6. Negrut, D., Dyer, A.: ADAMS/Solver Primer. MSC Software Corporation, Santa Ana (2004)

    Google Scholar 

  7. Nastran Nonlinear User’s Guide. SOL 400, MSC Software Corporation (2016)

  8. Abaqus Analysis Users Guide. Dassault Systèmes Simulia Corp. (2014)

  9. Allgower, E.L., Georg, K.: Numerical path following. In: Handbook of Numerical Analysis, Vol. V. Techniques of Scientific Computing (Part 2), pp. 3–207. Elsevier, Amsterdam (1997)

    Chapter  Google Scholar 

  10. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990)

    MATH  Google Scholar 

  11. Nonlinear finite element methods, course notes for ASEN 6107, http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/Home.html, accessed 3 March 2017

  12. About ADAMS/Solver. C++ Statements, MSC Software Corporation (2016)

  13. Bathe, K.J.: Finite Element Procedures. Klaus-Jürgen Bathe (2006)

    MATH  Google Scholar 

  14. Rose, G., Nguyen, D., Newman, B.: Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB. NASA/TM-2017-219655 (2017)

  15. Schiehlen, W. (ed.): Multibody Systems Handbook. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  16. MapleSim User’s Guide. MapleSoft, Waterloo Maple Inc. (2017)

  17. MapleSim Model Gallery, https://fr.maplesoft.com/products/maplesim/ModelGallery/Index.aspx, accessed 21 December 2017

  18. De Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, New York (2012)

    Book  MATH  Google Scholar 

  19. Ramm, E.: Strategies for tracing the nonlinear response near limit points. In: Proceedings of the Europe–U.S. Workshop on Nonlinear Finite Element Analysis in Structural Mechanics (1981)

    Google Scholar 

  20. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  21. Meirovitch, L.: Fundamentals of Vibrations. McGraw-Hill, New York (2001)

    Book  Google Scholar 

  22. Menrath, M.: Stability Criteria for Nonlinear Fully Implicit Differential-Algebraic Systems. University in Cologne, Germany (2011)

  23. Shabana, A.: Computational Dynamics, 3rd edn. Wiley, New York (2010)

    Book  MATH  Google Scholar 

  24. Bader, B.W.: Tensor-Krylov methods for solving large-scale systems of nonlinear equations, in: Sandia Report SAND2004-1837 (2004)

  25. MATLAB R2015b Documentation. The MathWorks, Inc. (2015)

  26. Negrut, D., Ortiz, J.: On an approach for the linearization of the differential algebraic equations of multibody dynamics. In: Proceedings of the ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications (2005)

    Google Scholar 

  27. Modelica®—A Unified Object-Oriented Language for Systems Modeling, Language Specification, Version 3.4. Modelica Association (2017)

  28. Maple User Manual. MapleSoft, Waterloo Maple Inc. (2017)

Download references

Acknowledgements

This work was funded by the Advanced Degree Program at NASA Langley Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey K. Rose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, G.K., Newman, B.A. & Nguyen, D.T. A path following method for identifying static equilibrium in multi-body-dynamic systems. Multibody Syst Dyn 45, 315–359 (2019). https://doi.org/10.1007/s11044-018-9618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-9618-7

Keywords

Navigation