Skip to main content
Log in

A finite element model of a 3D dry revolute joint incorporated in a multibody dynamic analysis

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this work a new approach to deal with non-ideal operative aspects of spatial revolute joints by means of a three-dimensional finite element analysis (3D-FEA) is presented. The developed model incorporates the inertia of the joint components and the corresponding material properties. The fact that actual joint mechanical components present dimensional and geometrical deviations resulting from the assembly process and operative conditions lead to frequent modifications relative to the design conditions that are worth analyzing. Such nonconformities include manufacturing tolerances and assembly errors, thermal effects, local deformations and clearances that directly affect the behavior and reliability of a mechanism, as they are typically at the origin of vibrations, noise and wear. In this work, a comprehensive assessment of the current contact force models implemented in the MultiBody Dynamics (MBD) approach is performed with the aim of understanding its main flaws and weaknesses, validating the need of a new model that is able to evaluate with accuracy the contact forces obtained. Finally, a benchmark problem is presented through a 3D slider–crank mechanism, allowing for the recognition of the differences that exist when the problem is analyzed by means of the MBD and FEM formulations. For this purpose, one of the joints is modeled as non-ideal, with both radial and axial clearances, the ultimate goal of which is to combine both approaches and, thus establish a crucial and pioneering connection to solve the contact problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abdallah, M.A.B., Khemili, I., Aifaoui, N.: Numerical investigation of a flexible slider–crank mechanism with multijoints with clearance. Multibody Syst. Dyn. 38(2), 173–199 (2016)

    Article  Google Scholar 

  2. Yaqubi, S., Dardel, M., Daniali, H.M., Ghasemi, M.H.: Modeling and control of crank–slider mechanism with multiple clearance joints. Multibody Syst. Dyn. 36(2), 143–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, X., Zhang, X.: Minimizing the influence of revolute joint clearance using the planar redundantly actuated mechanism. Robot. Comput.-Integr. Manuf. 46, 104–113 (2017)

    Article  Google Scholar 

  4. Skrinjar, L., Slavič, J., Boltežar, M.: A validated model for a pin-slot clearance joint. Nonlinear Dyn. 88(1), 131–143 (2017)

    Article  Google Scholar 

  5. Li, J., Huang, H., Yan, S., Yang, Y.: Kinematic accuracy and dynamic performance of a simple planar space deployable mechanism with joint clearance considering parameter uncertainty. Acta Astronaut. 136, 34–45 (2017)

    Article  Google Scholar 

  6. Akhadkar, N., Acary, V., Brogliato, B.: Analysis of collocated feedback controllers for four-bar planar mechanisms with joint clearances. Multibody Syst. Dyn. 38(2), 101–136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cammarata, A.: A novel method to determine position and orientation errors in clearance-affected overconstrained mechanisms. Mech. Mach. Theory 118, 247–264 (2017)

    Article  Google Scholar 

  8. Tian, Q., Lou, J., Mikkola, A.: A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics. Mech. Mach. Theory 107, 210–228 (2017)

    Article  Google Scholar 

  9. Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multibody Syst. Dyn. 2, 1–34 (2017)

    MATH  Google Scholar 

  10. Marques, F., Isaac, F., Dourado, N., Souto, A.P., Flores, P., Lankarani, H.M.: A study on the dynamics of spatial mechanisms with frictional spherical clearance joints. J. Comput. Nonlinear Dyn. 12(5), 051013 (2017)

    Article  Google Scholar 

  11. Pereira, C., Ambrósio, J., Ramalho, A.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015)

    Article  Google Scholar 

  12. Costa, J., Peixoto, J., Moreira, P., Souto, A.P., Flores, P., Lankarani, H.M.: Influence of the hip joint modeling approaches on the kinematics of human gait. J. Tribol. 98(3), 031201 (2016). 10 pages

    Article  Google Scholar 

  13. Wang, G., Qi, A., Wang, J.: A differential approach for modeling revolute clearance joints in planar rigid multibody systems. Multibody Syst. Dyn. 39(4), 311–335 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marques, F., Isaac, F., Dourado, N., Flores, P.: An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mech. Mach. Theory 116, 123–144 (2017)

    Article  Google Scholar 

  15. Pereira, C.M., Ramalho, A.L., Ambrósio, J.A.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63(4), 681–697 (2011)

    Article  Google Scholar 

  16. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    Article  MathSciNet  Google Scholar 

  17. Isaac, F., Marques, F., Dourado, N., Flores, P.: Recent developments on cylindrical contact force models with realistic properties In: New Trends in Mechanism and Machine Science. The Series Mechanisms and Machine Science, vol. 43. Springer, Berlin (2017)

    Chapter  Google Scholar 

  18. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  19. Earles, S.W.E., Wu, C.L.S.: Motion analysis of a rigid link mechanism with clearance at a bearing using Lagrangian mechanics and digital computation. J. Mech., 83–89 (1973)

  20. Dubowsky, S.: On predicting the dynamic effects of clearances in planar mechanisms. J. Eng. Ind. 96, 317–323 (1974)

    Article  Google Scholar 

  21. Dubowsky, S., Norris, M., Aloni, E., Tamir, A.: An analytical and experimental study of the prediction of impacts in planar mechanical systems with clearances. J. Mech. Transm. Autom. Des. 106, 444–451 (1984)

    Article  Google Scholar 

  22. Veluswami, M.A., Crossley, F.R.E., Horvay, G.: Multiple impacts of a ball between two plates—part 2: mathematical modeling. J. Eng. Ind. 97(3), 828–835 (1975)

    Article  Google Scholar 

  23. Gummer, A., Sauer, B.: Influence of contact geometry on local friction energy and stiffness of revolute joints. J. Tribol. 134(2), 021402 (2012)

    Article  Google Scholar 

  24. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  25. Pereira, C., Ramalho, A., Ambrosio, J.: Applicability domain of internal cylindrical contact force models. Mech. Mach. Theory 78, 141–157 (2014)

    Article  Google Scholar 

  26. Pereira, C.M., Ramalho, A.L., Ambrósio, J.A.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35(3), 277–298 (2015)

    Article  MATH  Google Scholar 

  27. Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multibody Syst. Dyn. 42(3), 249–282 (2018)

    Article  MATH  Google Scholar 

  28. Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42(3), 317–345 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Isaac, F.: Development of advanced models of spatial mechanical joints with realistic properties. MSc Dissertation, University of Minho, Guimarães, Portugal (2016)

  30. Dassault Systèmes, Simulia Academic, 2016. Abaqus License Software. Providence, RI, USA

  31. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  32. Kopp, R., Dohmen, P.M.: Simulation und Planung von Walz Prozessen mit Hilfe der FEM. Stahl U. Eisen 7, 131–136 (1990)

    Google Scholar 

  33. Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Johnson, K.L.: One hundred years of Hertz contact. Proc. Inst. Mech. Eng. 196, 363–378 (1982)

    Article  Google Scholar 

  36. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  37. Coulomb, C.A.: Théorie des machines simples, en ayant égard au frottement de leurs parties, et à la roideur des cordages. Mémoire de Mathématique et de Physique. Bachelier, Paris (1785)

    Google Scholar 

Download references

Acknowledgements

The first and second authors express their gratitude to the Portuguese Foundation for Science and Technology through the PhD grants (PD/BD/128385/2017 and PD/BD/114154/2016). This work is supported by FCT with the reference project UID/EEA/04436/2013, COMPETE 2020 with the code POCI-01-0145-FEDER-006941. Finally, the authors are much indebted to the anonymous reviewers for useful comments, recommendations and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Isaac.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaac, F., Marques, F., Dourado, N. et al. A finite element model of a 3D dry revolute joint incorporated in a multibody dynamic analysis. Multibody Syst Dyn 45, 293–313 (2019). https://doi.org/10.1007/s11044-018-09659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-09659-9

Keywords

Navigation