# Rigid vs compliant contact: an experimental study on biped walking

- 194 Downloads

## Abstract

Contact modeling plays a central role in motion planning, simulation and control of legged robots, as legged locomotion is realized through contact. The two prevailing approaches to model the contact consider rigid and compliant premise at interaction ports. Contrary to the dynamics model of legged systems with rigid contact (without impact) which is straightforward to develop, there is no consensus among researchers to employ a standard compliant contact model. Our main goal in this paper is to study the dynamics model structure of bipedal walking systems with rigid contact and a *novel* compliant contact model, and to present experimental validation of both models. For the model with rigid contact, after developing the model of the articulated bodies in flight phase without any contact with environment, we apply the holonomic constraints at contact points and develop a constrained dynamics model of the robot in both single and double support phases. For the model with compliant contact, we propose a novel nonlinear contact model and simulate motion of the robot using this model. In order to show the performance of the developed models, we compare obtained results from these models to the empirical measurements from bipedal walking of the human-size humanoid robot Surena III, which has been designed and fabricated at CAST, University of Tehran. This analysis shows the merit of both models in estimating dynamic behavior of the robot walking on a semi-rigid surface. The model with rigid contact, which is less complex and independent of the physical properties of the contacting bodies, can be employed for model-based motion optimization, analysis as well as control, while the model with compliant contact and more complexity is suitable for more realistic simulation scenarios.

## Keywords

Bipedal locomotion Dynamics modeling Contact modeling Rigid and compliant contact models Foot–ground contact## Notes

### Acknowledgements

The authors would like to express deep gratitude to the Industrial Development and Renovation Organization of Iran (IDRO) and Iran National Science Foundation (INSF) for their financial support (Project Number: 95849278) to develop the Surena III humanoid robot. We further thank to the members of CAST for their valuable participation in the design and fabrication of the robot.

## References

- 1.Baruh, H.: Analytical Dynamics. WCB/McGraw-Hill, Boston (1999) Google Scholar
- 2.Brown, P., McPhee, J.: A 3d ellipsoidal volumetric foot–ground contact model for forward dynamics. Multibody Syst. Dyn.
**42**(4), 447–467 (2018) MathSciNetGoogle Scholar - 3.Buschmann, T.: Simulation and control of biped walking robots. PhD thesis, Technical University of Munich (TUM) (2010) Google Scholar
- 4.Buschmann, T., Lohmeier, S., Ulbrich, H.: Humanoid robot Lola: design and walking control. J. Physiol.
**103**(3), 141–148 (2009) zbMATHGoogle Scholar - 5.Carpentier, J., Tonneau, S., Naveau, M., Stasse, O., Mansard, N.: A versatile and efficient pattern generator for generalized legged locomotion. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden (2016) Google Scholar
- 6.Dai, H., Tedrake, R.: Planning robust walking motion on uneven terrain via convex optimization. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 579–586. IEEE Press, New York (2016) Google Scholar
- 7.Dashkhaneh, A.: Modeling of the behavior of the lower-extremity joints in human walking and using it for the control of rehabilitation robots in the case of sci and stroke patients. PhD thesis, Tarbiat Modares University (2014) Google Scholar
- 8.Englsberger, J., Ott, C., Albu-Schäffer, A.: Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot.
**31**(2), 355–368 (2015) Google Scholar - 9.Ezati, M., Khadiv, M., Moosavian, S.A.A.: Effects of toe-off and heel-off motions on gait performance of biped robots. In: 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), pp. 007–012. IEEE Press, New York (2015) Google Scholar
- 10.Faraji, S., Pouya, S., Ijspeert, A.: Robust and agile 3d biped walking with steering capability using a footstep predictive approach. In: Robotics Science and Systems (RSS), EPFL-CONF-198512 (2014) Google Scholar
- 11.Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2014) zbMATHGoogle Scholar
- 12.Feng, S., Xinjilefu, X., Atkeson, C.G., Kim, J.: Robust dynamic walking using online foot step optimization. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5373–5378. IEEE Press, New York (2016) Google Scholar
- 13.Herdt, A., Diedam, H., Wieber, P.B., Dimitrov, D., Mombaur, K., Diehl, M.: Online walking motion generation with automatic footstep placement. Adv. Robot.
**24**(5–6), 719–737 (2010) Google Scholar - 14.Herzog, A., Rotella, N., Schaal, S., Righetti, L.: Trajectory generation for multi-contact momentum control. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 874–880. IEEE Press, New York (2015) Google Scholar
- 15.Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L.: Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Auton. Robots
**40**(3), 473–491 (2016) Google Scholar - 16.Herzog, A., Schaal, S., Righetti, L.: Structured contact force optimization for kino-dynamic motion generation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2703–2710. IEEE Press, New York (2016) Google Scholar
- 17.Hopkins, M.A., Leonessa, A., Lattimer, B.Y., Hong, D.W.: Optimization-based whole-body control of a series elastic humanoid robot. Int. J. Humanoid Robot.
**13**(01), 1550034 (2016) Google Scholar - 18.Jackson, J., Hass, C., Fregly, B.: Development of a subject-specific foot–ground contact model for walking. J. Biomech. Eng.
**138**(9), 091002 (2016) Google Scholar - 19.Jia, Y.B., Mason, M.T., Erdmann, M.A.: Multiple impacts: a state transition diagram approach. Int. J. Robot. Res.
**32**(1), 84–114 (2013) Google Scholar - 20.Juhász, T., Urbancsek, T.: Beyond the limits of kinematics in planning keyframed biped locomotion. Period. Polytech., Electr. Eng.
**53**(1–2), 3–9 (2011) Google Scholar - 21.Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 239–246. IEEE Press, New York (2001) Google Scholar
- 22.Khadiv, M., Moosavian, S.A.A., Sadedel, M.: Dynamics modeling of fully-actuated humanoids with general robot–environment interaction. In: 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 233–238. IEEE Press, New York (2014) Google Scholar
- 23.Khadiv, M., Moosavian, S.A.A., Yousefi-Koma, A., Sadedel, M., Mansouri, S.: Optimal gait planning for humanoids with 3d structure walking on slippery surfaces. Robotica
**35**(3), 1–19 (2015) Google Scholar - 24.Khadiv, M., Herzog, A., Moosavian, S.A.A., Righetti, L.: Step timing adjustment: a step toward generating robust gaits. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 35–42. IEEE Press, New York (2016) Google Scholar
- 25.Khadiv, M., Kleff, S., Herzog, A., Moosavian, S.A., Schaal, S., Righetti, L.: Stepping stabilization using a combination of dcm tracking and step adjustment. In: 2016 4th International Conference on Robotics and Mechatronics (ICROM) (2016) Google Scholar
- 26.Khadiv, M., Moosavian, S.A.A., Yousefi-Koma, A., Maleki, H., Sadedel, M.: Online adaptation for humanoids walking on uncertain surfaces. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. (2017, accepted). Available: arXiv:1703.10337
- 27.Kim, J.H., Joo, C.B.: Numerical construction of balanced state manifold for single-support legged mechanism in sagittal plane. Multibody Syst. Dyn.
**31**(3), 257–281 (2014) MathSciNetGoogle Scholar - 28.Komoda, K., Wagatsuma, H.: Energy-efficacy comparisons and multibody dynamics analyses of legged robots with different closed-loop mechanisms. Multibody Syst. Dyn.
**40**(2), 123–153 (2017) MathSciNetGoogle Scholar - 29.Koolen, T., Bertrand, S., Thomas, G., De Boer, T., Wu, T., Smith, J., Englsberger, J., Pratt, J.: Design of a momentum-based control framework and application to the humanoid robot atlas. Int. J. Humanoid Robot.
**13**(01), 1650007 (2016) Google Scholar - 30.Lim, I.s., Kwon, O., Park, J.H.: Gait optimization of biped robots based on human motion analysis. Robot. Auton. Syst.
**62**(2), 229–240 (2014) Google Scholar - 31.Lopes, D., Neptune, R., Ambrósio, J., Silva, M.: A superellipsoid-plane model for simulating foot-ground contact during human gait. Comput. Methods Biomech. Biomed. Eng.
**19**(9), 954–963 (2016) Google Scholar - 32.Marques, F., Isaac, F., Dourado, N., Souto, A.P., Flores, P., Lankarani, H.M.: A study on the dynamics of spatial mechanisms with frictional spherical clearance joints. J. Comput. Nonlinear Dyn.
**12**(5), 051,013 (2017) Google Scholar - 33.Mazumdar, A., Spencer, S.J., Hobart, C., Salton, J., Quigley, M., Wu, T., Bertrand, S., Pratt, J., Buerger, S.P.: Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot. IEEE/ASME Trans. Mechatron.
**22**(2), 898–908 (2017) Google Scholar - 34.McLean, S.G., Su, A., van den Bogert, A.J.: Development and validation of a 3D model to predict knee joint loading during dynamic movement. Trans. Am. Soc. Mech. Eng. J. Biomech. Eng.
**125**(6), 864–874 (2003) Google Scholar - 35.Millard, M., McPhee, J., Kubica, E.: Multi-step forward dynamic gait simulation. In: Multibody Dynamics, pp. 25–43. Springer, Berlin (2009) Google Scholar
- 36.Nikolić, M., Borovac, B., Raković, M.: Dynamic balance preservation and prevention of sliding for humanoid robots in the presence of multiple spatial contacts. Multibody Syst. Dyn.
**42**(2), 197–218 (2017) MathSciNetGoogle Scholar - 37.Orin, D.E., Goswami, A., Lee, S.H.: Centroidal dynamics of a humanoid robot. Auton. Robots
**35**(2–3), 161–176 (2013) Google Scholar - 38.Park, J.H., Kwon, O.: Reflex control of biped robot locomotion on a slippery surface. In: IEEE International Conference on Robotics and Automation, Proceedings 2001 ICRA, vol. 4, pp. 4134–4139. IEEE Press, New York (2001). 2001 Google Scholar
- 39.Peasgood, M., Kubica, E., McPhee, J.: Stabilization of a dynamic walking gait simulation. J. Comput. Nonlinear Dyn.
**2**(1), 65–72 (2007) Google Scholar - 40.Ponton, B., Herzog, A., Schaal, S., Righetti, L.: A convex model of humanoid momentum dynamics for multi-contact motion generation. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 842–849. IEEE Press, New York (2016) Google Scholar
- 41.Pratt, J.E.: Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots. Tech. rep., Massachusetts Inst. of Tech., Cambridge Dept. of Electrical Engineering and Computer Science (2000) Google Scholar
- 42.Pratt, J., Koolen, T., De Boer, T., Rebula, J., Cotton, S., Carff, J., Johnson, M., Neuhaus, P.: Capturability-based analysis and control of legged locomotion, part 2: application to M2V2, a lower-body humanoid. Int. J. Robot. Res.
**31**(10), 1117–1133 (2012) Google Scholar - 43.Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.: Optimal distribution of contact forces with inverse-dynamics control. Int. J. Robot. Res.
**32**(3), 280–298 (2013) Google Scholar - 44.Sadedel, M., Yousefi-Koma, A., Khadiv, M., Mahdavian, M.: Adding low-cost passive toe joints to the feet structure of Surena III humanoid robot. Robotica
**35**(11), 1–23 (2017) Google Scholar - 45.Sadedel, M., Yousefi-Koma, A., Khadiv, M., Mansouri, S.: Investigation on dynamic modeling of Surena III humanoid robot with heel-off and heel-strike motions. Iran. J. Sci. Technol., Trans. A, Sci.
**41**(1), 9–23 (2017) Google Scholar - 46.Sherman, M.A., Seth, A., Delp, S.L.: Simbody: multibody dynamics for biomedical research. Proc. IUTAM
**2**, 241–261 (2011) Google Scholar - 47.Taghirad, H., Belanger, P.: Modeling and parameter identification of harmonic drive systems. Trans. Am. Soc. Mech. Eng. J. Dyn. Syst. Meas. Control
**120**, 439–444 (1998) Google Scholar - 48.Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4906–4913. IEEE Press, New York (2012) Google Scholar
- 49.Tlalolini, D., Aoustin, Y., Chevallereau, C.: Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization. Multibody Syst. Dyn.
**23**(1), 33–56 (2010) MathSciNetzbMATHGoogle Scholar - 50.Wensing, P.M., Orin, D.E.: Improved computation of the humanoid centroidal dynamics and application for whole-body control. Int. J. Humanoid Robot.
**13**(01), 1550, 039 (2016) Google Scholar - 51.Wieber, P.B., Tedrake, R., Kuindersma, S.: Modeling and control of legged robots. In: Springer Handbook of Robotics, pp. 1203–1234. Springer, Berlin (2016) Google Scholar
- 52.Wojtyra, M.: Multibody Simulation Model of Human Walking (2003) Google Scholar