Skip to main content
Log in

Dynamic contact model of shell for multibody system applications

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In a multibody system consisting of shell structures, the contact may appear in any area of shells. It is difficult to simulate the contact of shells with large deformation because of the geometric nonlinearity of deformation and the boundary nonlinearity of contact. This study presents a rotation-free shell formulation and an extended contact discretization in multibody systems using a corotational frame. This model is different from previous formulations in the definition of the local frame and the processing of local large curvature. In order to deal with the shell contact, a unified contact discretization scheme including edge-to-edge contact for facet triangle shell elements is proposed to solve the large penetration problem. A series of numerical examples of multibody dynamics have validated the approach of the nonlinear shell model and contact treatments. Moreover, a practical application of deployment of solar cells shows the capability of the proposed formulation in solving large-scale problems of flexible multibody system with large deformation and contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. ABAQUS: ABAQUS Theory Guide. Dassault Systèmes, Providence, RI, USA (2017)

  2. ABAQUS: ABAQUS Users’s Guide Volume V: Prescribed Conditions, Constraint & Interactions. Dassault Systèmes, Providence, RI, USA (2017)

  3. Areias, P., Garção, J., Pires, E.B., Barbosa, J.I.: Exact corotational shell for finite strains and fracture. Comput. Mech. 48, 385–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauchau, O., Choi, J.Y., Bottasso, C.L.: On the modeling of shells in multibody dynamics. Multibody Syst. Dyn. 8, 459–489 (2002)

    Article  MATH  Google Scholar 

  6. Crisfield, M.A.: A unified co-rotational framework solids, shells and beams. Int. J. Solids Struct. 33(1986), 2969–2992 (1996)

    Article  MATH  Google Scholar 

  7. Das, M., Barut, A., Madenci, E.: Analysis of multibody systems experiencing large elastic deformations. Multibody Syst. Dyn. 23(1), 1–31 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eberhard, P., Hu, B.: Advanced Contact Dynamics. Southeast University Press, Nanjing (2003)

    Google Scholar 

  9. Felippa, C.A., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. Theory. In: Computer Methods in Applied Mechanics and Engineering (2005)

    Google Scholar 

  10. Flores, F.G., Oñate, E.: Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach. Comput. Methods Appl. Mech. Eng. 194(6–8), 907–932 (2005)

    Article  MATH  Google Scholar 

  11. Flores, F.G., Oñate, E.: Wrinkling and folding analysis of elastic membranes using an enhanced rotation-free thin shell triangular element. Finite Elem. Anal. Des. 47(9), 982–990 (2011)

    Article  MathSciNet  Google Scholar 

  12. Gärdsback, M., Tibert, G.: A comparison of rotation-free triangular shell elements for unstructured meshes. Comput. Methods Appl. Mech. Eng. 196(49–52), 5001–5015 (2007)

    Article  MATH  Google Scholar 

  13. Guo, Y.Q., Gati, W., Naceur, H., Batoz, J.L.: An efficient DKT rotation free shell element for springback simulation in sheet metal forming. Comput. Struct. 80, 2299–2312 (2002)

    Article  Google Scholar 

  14. Hallquist, J.O.: LS-DYNA Theory manual. March (2006)

  15. Hallquist, J.O., Goudreau, G.L., Benson, D.J.: Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput. Methods Appl. Mech. Eng. 51(1–3), 107–137 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klaus-Jurgen, B., Chaudhary, A.: A solution method for planar and axisymmetric contact problems. Int. J. Numer. Methods Eng. 21, 65–88 (1985)

    Article  MATH  Google Scholar 

  17. Konyukhov, A., Izi, R.: Introduction to Computational Contact Mechanics. Wiley, Chichester (2015)

    MATH  Google Scholar 

  18. Linhard, J., Wüchner, R., Bletzinger, K.U.: “Upgrading” membranes to shells—the CEG rotation free shell element and its application in structural analysis. Finite Elem. Anal. Des. 44(1–2), 63–74 (2007)

    Article  MathSciNet  Google Scholar 

  19. Liu, Z., Hong, J., Liu, J.: Finite element formulation for dynamics of planar flexible multi-beam system. Multibody Syst. Dyn. 22(1), 1–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Z., Liu, J.: Experimental validation of rigid-flexible coupling dynamic formulation for hub–beam system. Multibody Syst. Dyn. 40(3), 303–326 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. LS-DYNA: LS-DYNA keyword user’s manual volume I. Livermore Software Technology Corporation, Livermore, California (2017)

  22. Lu, J., Zheng, C.: Dynamic cloth simulation by isogeometric analysis. Comput. Methods Appl. Mech. Eng. 268, 475–493 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mcdevitt, T.W., Laursen, T.A.: A mortar-finite element formulation for frictional contact problems. Int. J. Numer. Methods Eng. 48(10), 1525–1547 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mikkola, A.K.I.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moller, T.: Fast triangle-triangle intersection test. Doktorsavh. Chalmers Tek. Högsk. 1425, 123–129 (1998)

    Google Scholar 

  26. Nour-Omid, B., Rankin, C.: Finite rotation analysis and consistent linearization using projectors. Comput. Methods Appl. Mech. Eng. 93(3), 353–384 (1991)

    Article  MATH  Google Scholar 

  27. Oñate, E., Cendoya, P., Miquel, J.: Non-linear explicit dynamic analysis of shells using the BST rotation-free triangle. Eng. Comput. 19(6), 662–706 (2002)

    Article  MATH  Google Scholar 

  28. Oñate, E., Cervera, M.: Derivation of thin plate bending elements with one degree of freedom per node: a simple three node triangle. Eng. Comput. 10(6), 543–561 (1993)

    Article  Google Scholar 

  29. Oñate, E., Flores, F.G.: Advances in the formulation of the rotation-free basic shell triangle. Comput. Methods Appl. Mech. Eng. 194(21–24), 2406–2443 (2005)

    Article  MATH  Google Scholar 

  30. Phaal, R., Calladine, C.R.: A simple class of finite elements for plate and shell problems. I: Elements for beams and thin flat plates. Int. J. Numer. Methods Eng. 35(5), 955–977 (1992)

    Article  MATH  Google Scholar 

  31. Phaal, R., Calladine, C.R.: Simple class of finite elements for plate and shell problems. II: An element for thin shells, with only translational degrees of freedom. Int. J. Numer. Methods Eng. 35(5), 979–996 (1992)

    Article  MATH  Google Scholar 

  32. Puso, M.A., Laursen, T.A.: A mortar segment-to-segment contact method for large deformation solid mechanics. Comput. Methods Appl. Mech. Eng. 193(6–8), 601–629 (2004)

    Article  MATH  Google Scholar 

  33. Sabourin, F., Brunet, M.: Analysis of plates and shells with a simplified three node triangular element. Thin-Walled Struct. 21(3), 209–223 (1995)

    Article  Google Scholar 

  34. Sabourin, F., Brunet, M.: Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis. Eng. Comput. 23(5), 469–502 (2006)

    Article  MATH  Google Scholar 

  35. Schiehlen, W., Guse, N., Seifried, R.: Multibody dynamics in computational mechanics and engineering applications. Comput. Methods Appl. Mech. Eng. 195(41–43), 5509–5522 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schiehlen, W., Seifried, R.: Three approaches for elastodynamic contact in multibody systems. Multibody Syst. Dyn. 12(1), 1–16 (2004)

    Article  MATH  Google Scholar 

  37. Shabana, A., Christensen, A.: Three dimensional absolute nodal coordinate formulation: plate problem. Int. J. Numer. Methods Eng. 40, 2775–2790 (1997).

    Article  MATH  Google Scholar 

  38. Simo, J.: On a stress resultant geometrically exact shell model. Part VII: Shell intersections with 5/6-DOF finite element formulations. Comput. Methods Appl. Mech. Eng. 108(3–4), 319–339 (1993)

    Article  MATH  Google Scholar 

  39. Sze, K.Y., Zhou, Y.X.: An efficient rotation-free triangle for drape/cloth simulations—part I: model improvement, dynamic simulation and adaptive remeshing. Int. J. Comput. Methods 13(3), 1650021 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Temizer, I., Wriggers, P., Hughes, T.: Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput. Methods Appl. Mech. Eng. 209–212, 115–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  42. Wriggws, P., Stbin, E.: Finite element formulation deformation impact-contact with friction of large problems. Comput. Struct. 37(3), 319–331 (1990)

    Article  Google Scholar 

  43. Zhou, Y., Sze, K.: A geometric nonlinear rotation-free triangle and its application to drape simulation. Int. J. Numer. Methods Eng. 89, 509–536 (2011)

    Article  MATH  Google Scholar 

  44. Zhou, Y.X., Sze, K.: An Efficient Rotation-Free Triangle and its Application in Cloth Simulations. Ph.D. thesis, The University of Hong Kong (2013)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 11772188, No. 11132007), for which the authors are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuyong Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Liu, Z. & Hong, J. Dynamic contact model of shell for multibody system applications. Multibody Syst Dyn 44, 335–366 (2018). https://doi.org/10.1007/s11044-018-09641-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-09641-5

Keywords

Navigation