Skip to main content
Log in

Modelling of flexible bodies with minimal coordinates by means of the corotational formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the extension of the minimal coordinates approach to flexible bodies. When using minimal coordinates, the number of configuration parameters corresponds exactly to the number of degrees of freedom and they can be chosen arbitrarily as far as there is a one-to-one relationship between the configuration of the system and the configuration parameters. In the rigid case, the equations of motion are obtained from the description of the translational and rotational motion of a frame attached to each body in terms of the chosen configuration parameters, and from the forces acting on each body. The extension to the simulation of flexible bodies naturally leads to a description of the motion of a flexible body from the one of its nodes. However, the relationship between the latter and the full internal motion of the body is not unique and is the subject of various developments. It was then proposed for the sake of generality to systematically treat flexible bodies as superelements, implemented according to the corotational approach, with a floating corotational frame. This allows to model any flexible body from its mass and stiffness matrices obtained from any available finite element code. Moreover, it doesn’t impose any restriction on the kinematics of the nodes which can then be expressed indifferently from absolute or relative coordinates as usually encountered with minimal coordinates. After a description of the adopted framework, the paper develops the equations of motion. Some test examples are presented, where the proposed approach will be compared to the ones obtained with the classical body reference frame approach and results from the literature. In some cases, the influence of the chosen corotational frame is analysed. The examples confirm that the corotational formulation should be restricted to flexible bodies involving only small deformations and rotational velocity. It is also shown that modelling can be adapted to improve the quality of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. While \(\boldsymbol{\mathrm{v}}\) denotes a vector specified by a magnitude, an orientation and a sense, \(\{\boldsymbol{\mathrm{v}}\}_{*}\) denotes the \(3\times1\) matrix gathering the coordinates of vector \(\boldsymbol{\mathrm{v}}\) in coordinate system *.

References

  1. Schiehlen, W.: Multibody System Handbook. Springer, New York (1990)

    Book  MATH  Google Scholar 

  2. Wehage, R., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)

    Article  Google Scholar 

  3. Nikravesh, P.: Systematic reduction of multibody equations of motion to a minimal set. Int. J. Non-Linear Mech. 25(2–3), 143–151 (1990)

    Article  MATH  Google Scholar 

  4. Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Kim, S., Vanderploeg, M.: QR decomposition for state space representation of constrained mechanical dynamic systems. J. Mech. Transm. Autom. Des. 108(2), 183–188 (1986)

    Article  Google Scholar 

  6. Singh, R., Likins, P.: Singular value decomposition for constrained dynamical systems. J. Appl. Mech. 52(4), 943–948 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hiller, M., Kecskeméthy, A.: Dynamics of multibody systems with minimal coordinates. In: Pereira, M.F.O.S., Ambrosio, J.A.C. (eds.) Computer-Aided Analysis of Rigid and Flexible Mechanical Systems. NATO ASI, vol. 268, pp. 61–100. Kluwer Academic Publishers, Dordrecht (1994)

    Chapter  Google Scholar 

  8. Blajer, W., Schiehlen, W., Schirm, W.: Dynamic analysis of constrained multibody systems using inverse kinematics. Mech. Mach. Theory 28(3), 397–405 (1993)

    Article  MATH  Google Scholar 

  9. Hiller, M., Woernle, C.: Characteristic pair of joints—an effective approach for the inverse kinematic problem of robots. In: Proceedings of IEEE International Conference on Robotics and Automation, Philadelphia, USA, pp. 846–851 (1988)

    Google Scholar 

  10. Hiller, M., Kecskemethy, A.: Equations of motion of complex multibody systems using kinematical differentials. Trans. Can. Soc. Mech. Eng. 13(4), 113–121 (1990)

    Google Scholar 

  11. Verlinden, O., Ben Fékih, L., Kouroussis, G.: Symbolic generation of the kinematics of multibody systems in EasyDyn: from MuPAD to Xcas/Giac. Theor. Appl. Mech. Lett. 3, 013012 (2013)

    Article  Google Scholar 

  12. Kouroussis, G., Verlinden, O., Rustin, C., Bombled, Q.: EasyDyn: multibody open-source framework for advanced research purposes. In: Proceedings (on CD) of the ECCOMAS Thematic Conference Multibody Dynamics, Brussels, Belgium (2011)

    Google Scholar 

  13. Masarati, P., Morandini, M., Mantegazza, P.: An efficient formulation for general-purpose multibody/multiphysics analysis. J. Comput. Nonlinear Dyn. 9(4), 041001 (2014)

    Article  Google Scholar 

  14. Gerstmayr, J., Dorninger, A., Eder, R., Gruber, P., Reischl, D., Saxinger, M., Schörgenhumer, M., Humer, A., Nachbagauer, K., Pechstein, A., Vetyukov, Y.: HOTINT—a script language based framework for the simulation of multibody dynamics systems. In: Proceedings of the ASME Design Engineering Technical Conference, Portland, OR, vol. 7B (2013)

    Google Scholar 

  15. Ducobu, F., Rivière, E., Filippi, E.: Dynamic simulation of the micro-milling process including minimum chip thickness and size effect. Key Eng. Mater. 504, 1269–1274 (2012)

    Article  Google Scholar 

  16. Huynh, H.N., Rivière-Lorphèvre, E., Verlinden, O.: Integration of machining simulation within a multibody framework: application to milling. In: Proceedings of the 4th Joint International Conference on Multibody System Dynamics IMSD, Canada (2016)

    Google Scholar 

  17. Wasfy, T., Noor, A.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

    Article  Google Scholar 

  18. Ibrahimbegović, A., Mamouri, S.: On rigid components and joint constraints in nonlinear dynamics of flexible multibody systems employing 3D geometrically exact beam model. Comput. Methods Appl. Mech. Eng. 188(4), 805–831 (2000)

    Article  MATH  Google Scholar 

  19. Jelenic, G., Crisfield, M.: Dynamic analysis of 3D beams with joints in presence of large rotations. Comput. Methods Appl. Mech. Eng. 190(32–33), 4195–4230 (2001)

    Article  MATH  Google Scholar 

  20. Paul, R.: Robot Manipulators. Mathematics, Programming and Control. MIT Press, London (1982)

    Google Scholar 

  21. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  22. Cardona, A., Géradin, M.: Modelling of superelements in mechanism analysis. Int. J. Numer. Methods Eng. 32, 1565–1593 (1991)

    Article  MATH  Google Scholar 

  23. Cardona, A.: Superelements modelling in flexible multibody dynamics. Multibody Syst. Dyn. 4, 245–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Verlinden, O., Dehombreux, P., Conti, C.: A new formulation for the direct dynamic simulation of flexible mechanisms based on the Newton–Euler inverse method. Int. J. Numer. Methods Eng. 37, 3363–3387 (1991)

    Article  MATH  Google Scholar 

  25. Cardona, A., Géradin, M.: A beam finite element nonlinear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Belgian National Fund for Scientific research (FNRS-FRS) for the FRIA grant allotted to H.N. Huynh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Verlinden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verlinden, O., Huynh, H.N., Kouroussis, G. et al. Modelling of flexible bodies with minimal coordinates by means of the corotational formulation. Multibody Syst Dyn 42, 495–514 (2018). https://doi.org/10.1007/s11044-017-9609-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9609-0

Keywords

Navigation