Skip to main content

Advertisement

Log in

Dynamics analysis and fuzzy anti-swing control design of overhead crane system based on Riccati discrete time transfer matrix method

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper describes an efficient method called Riccati discrete time transfer matrix method of multibody system (MS-RDTTMM) for studying the dynamic modeling and anti-swing control design of a two-dimensional overhead crane system, which consists of a trolley, rope, load, and control subsystem. Regarding the rope as a series of rigid segments connected by hinges, a multibody model of the overhead crane system can be developed easily by using MS-RDTTMM. Then three separate fuzzy logic controllers are designed for positioning and anti-swing control. For improving the performance of the predesigned fuzzy control system, the genetic algorithm based on MS-RDTTMM is presented offline to tune the initial control parameters. Using the recursive transfer formula to describe the system dynamics, instead of the global dynamics equation in ordinary dynamics methods, the matrices involved in this method are always very small, and the computational cost of the dynamic analysis and control system optimization can be greatly reduced. The numerical verification is carried out to show the computational efficiency, numerical stability, and control performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chang, C.Y.: Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance. IEEE Trans. Ind. Inform. 3(2), 164–172 (2007)

    Article  Google Scholar 

  2. Chang, C.Y., Chiang, K.H.: Fuzzy projection control law and its application to the overhead crane. Mechatronics 18, 607–615 (2008)

    Article  Google Scholar 

  3. Matsuo, T., Yoshino, R., Suemitsu, H., et al.: Nominal performance recovery by PID+Q controller and its application to antisway control of crane lifter with visual feedback. IEEE Trans. Control Syst. Technol. 12(1), 156–166 (2004)

    Article  Google Scholar 

  4. Park, M.S., Chwa, D., Hong, S.K.: Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Trans. Ind. Electron. 55(11), 3972–3984 (2008)

    Article  Google Scholar 

  5. Lee, H.H., Cho, S.K.: A new fuzzy-logic anti-swing control for industrial three-dimensional overhead cranes. In: Proceedings of IEEE International Conference on Robotics & Automation, pp. 2956–2961 (2001)

    Google Scholar 

  6. Karkoub, M.A., Zribi, M.: Modeling and energy based nonlinear control of crane lifters. IEE Proc., Control Theory Appl. 149(3), 209–215 (2002)

    Article  Google Scholar 

  7. Fang, Y., Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear coupling control laws for an underactuated overhead crane systems. IEEE/ASME Trans. Mechatron. 8(3), 418–423 (2003)

    Article  Google Scholar 

  8. Liu, D.T., Yi, J.Q., Zhao, D.B.: Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics 15, 505–522 (2005)

    Article  Google Scholar 

  9. Yu, W., Moreno-Armendariz, M.A., Rodriguez, F.O.: Stable adaptive compensation with fuzzy CMAC for an overhead crane. Inf. Sci. 181(21), 4895–4907 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tuan, L.A., Moon, S.C., Lee, W.G., et al.: Adaptive sliding mode control of overhead cranes with varying cable length. J. Mech. Sci. Technol. 27(3), 885–893 (2013)

    Article  Google Scholar 

  11. Pezeshki, S., Badamchizadeh, M.A., Ghiasi, A.R., et al.: Control of overhead crane system using adaptive model-free and adaptive fuzzy sliding mode controllers. J. Control Autom. Electr. Syst. 26(1), 1–15 (2015)

    Article  Google Scholar 

  12. Zhang, Z.C., Wu, Y.Q., Huang, J.M.: Differential-flatness-based finite-time anti-swing control of underactuated crane systems. Nonlinear Dyn. 87(3), 1749–1761 (2017)

    Article  MATH  Google Scholar 

  13. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18(1), 3–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody system. Appl. Mech. Rev. 56(6), 553–613 (2003)

    Article  Google Scholar 

  15. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  16. Ambrósio, J.A.C., Gonçalves, J.P.C.: Complex flexible multibody systems with application to vehicle dynamics. Multibody Syst. Dyn. 10(6), 168–182 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  18. Pestel, E.C., Leckie, F.A.: Matrix Method in Elastomechanics. McGraw-Hill, New York (1963)

    Google Scholar 

  19. Rui, X.T., He, B., Lu, Y.Q., et al.: Discrete time transfer matrix method for multibody system dynamics. Multibody Syst. Dyn. 14(3–4), 317–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rong, B., Rui, X.T., Tao, L.: Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism. Multibody Syst. Dyn. 28(4), 291–311 (2012)

    Article  MathSciNet  Google Scholar 

  21. He, B., Rui, X.T., Wang, G.P.: Riccati discrete time transfer matrix method for elastic beam undergoing large overall motion. Multibody Syst. Dyn. 18(4), 579–598 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, G.P., Rong, B., Tao, L., et al.: Riccati discrete time transfer matrix method for dynamic modeling and simulation of an underwater towed system. J. Appl. Mech. 79, 041014 (2012)

    Article  Google Scholar 

  23. Rong, B.: Efficient dynamics analysis of large-deformation flexible beams by using the absolute nodal coordinate transfer matrix method. Multibody Syst. Dyn. 32(4), 535–549 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kamman, J.W., Huston, R.L.: Multibody dynamics modeling of variable length cable systems. Multibody Syst. Dyn. 5, 211–221 (2001)

    Article  MATH  Google Scholar 

  25. Williams, P., Trivailo, P.: A study on the transitional dynamics of a towed-circular aerial cable system. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, 15–18 August 2005, San Francisco, California (2005)

    Google Scholar 

  26. Quisenberry, J.E., Arena, A.S.: Discrete cable modeling and dynamic analysis. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nevada (2006)

    Google Scholar 

  27. Dokainish, M.A., Subbaraj, K.: A study of direct time-integration methods in computational structural dynamics-I. Explicit methods. Comput. Struct. 32(6), 1371–1386 (1989)

    Article  MATH  Google Scholar 

  28. Zhou, Y.: Research and simulation on anti-swing of container crane using fuzzy intelligent control. Master’s Thesis, Wuhan University of Technology (2003)

  29. Wang, Y.Y.: Research on fuzzy logic anti-swing control of overhead crane. Master’s Thesis, Dalian University of Technology (2008)

  30. Murata, T., Ishibuchi, H., Tanaka, H.: Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput. Ind. Eng. 30(4), 957–968 (1996)

    Article  Google Scholar 

  31. Li, Y., Liu, J.C., Wang, Y.: An improved adaptive weight approach GA for optimizing multi-objective rolling schedules in a tandem cold rolling. Control Theory Appl. 26(6), 687–693 (2009)

    Google Scholar 

  32. Poursamad, A., Montazeri, M.: Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles. Control Eng. Pract. 16, 861–873 (2008)

    Article  Google Scholar 

  33. Horner, G.C.: The Riccati transfer matrix method. Ph.D. dissertation, University of Virginia, USA (1975)

Download references

Acknowledgements

The research was supported by the Natural Science Foundation of China (Grant Nos. 11702292, 11605234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, B., Rui, X., Tao, L. et al. Dynamics analysis and fuzzy anti-swing control design of overhead crane system based on Riccati discrete time transfer matrix method. Multibody Syst Dyn 43, 279–295 (2018). https://doi.org/10.1007/s11044-017-9598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9598-z

Keywords

Navigation