Skip to main content
Log in

Path defined directed graph vector (Pgraph) method for multibody dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Dynamical modeling of complex systems may include multiple combinations of serial and tree topologies, as well as closed kinematic chain systems. Simulating of such systems is a costly task not only for run time but also for construction time when a model description and constraints are introduced. This paper presents a systematic framework of a construction time efficient modeling methodology for complex systems by introducing a path defined directed graph vector (\(\mathit{Pgraph}\)) and the associated methodology based on Linear Graph Theory (LGT). Updating of body coordinate frame vectors which can be a challenge in complex topology systems is easily performed using the proposed method. This technique is especially useful for systems changing topology, such as walking mechanisms where bilateral and unilateral constraints are conditionally embedded. Although this is a general methodology, to be combined with many dynamical modeling algorithms available in the literature, here we demonstrate it using Spatial Operator Algebra (SOA), which is a recursive algorithm based on the Newton–Euler formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anderson, K.: An order \(n\) formulation for the motion simulation of general multi-rigid-body constrained systems. Comput. Struct. 43(3), 565–579 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baraff, D.: Linear-time dynamics using lagrange multipliers. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 137–146. ACM, New York (1996)

    Google Scholar 

  3. Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983)

    Article  Google Scholar 

  4. Featherstone, R.: A beginner’s guide to 6-d vectors (part 2) [tutorial]. IEEE Robot. Autom. Mag. 4(17), 88–99 (2010)

    Article  Google Scholar 

  5. Featherstone, R., Orin, D.: Robot dynamics: equations and algorithms. In: ICRA, pp. 826–834 (2000)

    Google Scholar 

  6. Fijany, A., Featherstone, R.: A new factorization of the mass matrix for optimal serial and parallel calculation of multibody dynamics. Multibody Syst. Dyn. 29(2), 169–187 (2013)

    Article  MathSciNet  Google Scholar 

  7. Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J. Guid. Control Dyn. 14(3), 531–542 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jain, A.: Robot and Multibody Dynamics: Analysis and Algorithms. Springer, New York (2010)

    MATH  Google Scholar 

  9. Jain, A.: Graph theoretic foundations of multibody dynamics. Multibody Syst. Dyn. 26(3), 335–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jain, A.: Multibody graph transformations and analysis. Nonlinear Dyn. 67(4), 2779–2797 (2012)

    Article  MATH  Google Scholar 

  11. Jain, A., Rodriguez, G.: Recursive flexible multibody system dynamics using spatial operators. J. Guid. Control Dyn. 15(6), 1453–1466 (1992)

    Article  MATH  Google Scholar 

  12. Jain, A., Rodriguez, G.: An analysis of the kinematics and dynamics of underactuated manipulators. IEEE Trans. Robot. Autom. 9(4), 411–422 (1993)

    Article  Google Scholar 

  13. Jain, A., Rodriguez, G.: Linearization of manipulator dynamics using spatial operators. IEEE Trans. Syst. Man Cybern. 23(1), 239–248 (1993)

    Article  MATH  Google Scholar 

  14. McPhee, J.J., Ishac, M.G., Andrews, G.C.: Wittenburg’s formulation of multibody dynamics equations from a graph-theoretic perspective. Mech. Mach. Theory 31(2), 201–213 (1996)

    Article  Google Scholar 

  15. Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  16. Richard, M., Bouazara, M., Therien, J.: Analysis of multibody systems with flexible plates using variational graph-theoretic methods. Multibody Syst. Dyn. 25(1), 43–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: A spatial operator algebra for manipulator modeling and control. Int. J. Robot. Res. 10(4), 371–381 (1991)

    Article  Google Scholar 

  18. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: Spatial operator algebra for multibody system dynamics. J. Astronaut. Sci. 40(1), 27–50 (1992)

    MathSciNet  Google Scholar 

  19. Schmitke, C., Morency, K., McPhee, J.: Using graph theory and symbolic computing to generate efficient models for multi-body vehicle dynamics. J. Multi-Body Dyn. 222(4), 339–352 (2008)

    Google Scholar 

  20. Shi, P., McPhee, J.: Dynamics of flexible multibody systems using virtual work and linear graph theory. Multibody Syst. Dyn. 4(4), 355–381 (2000)

    Article  MATH  Google Scholar 

  21. Shi, P., McPhee, J.: Symbolic programming of a graph-theoretic approach to flexible multibody dynamics. Mech. Struct. Mach. 30, 123–154 (2002)

    Article  Google Scholar 

  22. Wittenburg, J.: Dynamics of Systems of Rigid Bodies, vol. 33. Springer, New York (1977)

    Book  MATH  Google Scholar 

  23. Yesiloglu, S.M., Temeltas, H.: Dynamical modeling of cooperating underactuated manipulators for space manipulation. Adv. Robot. 24(3), 325–341 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa Nurullah Yazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazar, M.N., Yesiloglu, S.M. Path defined directed graph vector (Pgraph) method for multibody dynamics. Multibody Syst Dyn 43, 209–227 (2018). https://doi.org/10.1007/s11044-017-9595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9595-2

Keywords

Navigation