Skip to main content
Log in

Extension of the divide-and-conquer algorithm for the efficient inverse dynamics analysis of multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a new mathematical framework to extend the Generalized Divide-and-Conquer Algorithm (GDCA) for the inverse dynamics analysis of fully actuated constrained multibody systems. Inverse-GDCA (iGDCA) is a highly parallelizable method which does not create the mass and Jacobian matrices of the entire system. In this technique, generalized driving forces and constraint loads due to kinematic pairs are clearly and separately differentiated from each other in the equations of motion. As such, it can be easily used for control scheme purposes. iGDCA works based on a series of recursive assembly and disassembly passes to form and solve the equations governing the inverse dynamics of the system. Herein, the mathematical formulations to efficiently combine the dynamics of consecutive bodies in the assembly pass for the purpose of inverse dynamics analysis are presented. This is followed by generating the disassembly pass algorithm to efficiently compute generalized actuating forces. Furthermore, this paper presents necessary mathematical formulations to efficiently treat the inverse dynamics of multibody systems involving kinematic loops with various active and passive boundary conditions. This is followed by the design of a new strategy to efficiently perform the assembly–disassembly pass in these complex systems while avoiding unnecessary computations. Finally, the presented method is applied to selected open-chain and closed-chain multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anderson, K.S.: Recursive derivation of explicit equations of motion for efficient dynamic/control simulation of large multibody systems. PhD thesis, Stanford University (1990)

  2. Armstrong, W.W.: Recursive solution to the equations of motion of an \(n\)-link manipulator. In: Fifth World Congress on the Theory of Machines and Mechanisms, vol. 2, pp. 1342–1346 (1979)

    Google Scholar 

  3. Bae, D.S., Haug, E.J.: A recursive formation for constrained mechanical system dynamics: part I, open loop systems. Mech. Struct. Mach. 15(3), 359–382 (1987)

    Article  Google Scholar 

  4. Bhalerao, K.D., Poursina, M., Anderson, K.S.: An efficient direct differentiation approach for sensitivity analysis of flexible multibody systems. Multibody Syst. Dyn. 23(2), 121–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandl, H., Johanni, R., Otter, M.: A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. In: IFAC/IFIP/IMACS Symposium, Vienna, Austria, pp. 95–100 (1986)

    Google Scholar 

  6. Chadaj, K., Malczyk, P., Fraczek, J.: Efficient parallel formulation for dynamics simulation of large articulated robotic systems. In: 20th International Conference on Methods and Models in Automation and Robotics, MMAR 2015, Mikedzyzdroje, Poland, August 24–27, 2015, pp. 441–446 (2015). doi:10.1109/MMAR.2015.7283916

    Google Scholar 

  7. Dasgupta, B., Mruthyunjaya, T.: A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 33(8), 1135–1152 (1998). doi:10.1016/S0094-114X(97)00118-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Di, Z.M., Kang, B.: An inverse dynamic model of over-constrained parallel kinematic machine based on Newton–Euler formulation. J. Dyn. Syst. Meas. Control 136(3), 041001 (2014)

    Google Scholar 

  9. Haug, E.J., Ehle, P.E.: Second-order design sensitivity analysis of mechanical system dynamics. Int. J. Numer. Methods Eng. 18, 1699–1717 (1982)

    Article  MATH  Google Scholar 

  10. Featherstone, R.: The calculation of robotic dynamics using articulated body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983)

    Article  Google Scholar 

  11. Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic, New York (1987)

    Book  Google Scholar 

  12. Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel \({O}(\log(n))\) calculation of rigid body dynamics. Part 1: basic algorithm. Int. J. Robot. Res. 18(9), 867–875 (1999)

    Article  Google Scholar 

  13. Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel \({O}(\log(n))\) calculation of rigid body dynamics. Part 2: trees, loops, and accuracy. Int. J. Robot. Res. 18(9), 876–892 (1999)

    Article  Google Scholar 

  14. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, New York (2007)

    MATH  Google Scholar 

  15. Fumagalli, A., Masarati, P.: Real-time inverse dynamics control of parallel manipulators using general-purpose multibody software. Multibody Syst. Dyn. 22(1), 47–68 (2009). doi:10.1007/s11044-009-9153-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Hollerbach, J.M.: A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man Cybern. SMC-10(11), 730–736 (1980)

    Article  MathSciNet  Google Scholar 

  17. Hollerbach, J.M., Sahar, G.: Wrist-partitioned, inverse kinematic accelerations and manipulator dynamics. Int. J. Robot. Res. 1, 152–161 (1983)

    Google Scholar 

  18. Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J. Guid. Control Dyn. 14(3), 531–542 (1991)

    Article  MATH  Google Scholar 

  19. Jain, A., Vaidehi, N., Rodriguez, G.: A fast recursive algorithm for molecular dynamics simulation. J. Comput. Phys. 106(2), 258–268 (1993)

    Article  MATH  Google Scholar 

  20. Kane, T.R., Levinson, D.A.: The use of Kane’s dynamical equations in robotics. Int. J. Robot. Res. 2(3), 3–21 (1983)

    Article  Google Scholar 

  21. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Application. McGraw-Hill, New York (1985)

    Google Scholar 

  22. Kingsley, C.: Efficient computation of inverse dynamics for computed torque control of multibody systems. Master’s thesis, University of Arizona (2015)

  23. Kingsley, C., Poursina, M.: Computed torque control of articulated multibody systems in the generalized divide and conquer algorithm framework. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 27th Conference on Mechanical Vibration and Noise, DETC2015-46853, Boston, MA (2015)

    Google Scholar 

  24. Kreutz-Delgado, K., Jain, A., Rodriguez, G.: Recursive formulation of operational space control. Int. J. Robot. Res. 11(4), 320–328 (1992)

    Article  Google Scholar 

  25. Laflin, J., Anderson, K.S., Khan, I.M., Poursina, M.: Advances in the application of the divide-and-conquer algorithm to multibody system dynamics. J. Comput. Nonlinear Dyn. 9, 041003 (2014). doi:10.1115/1.4026072

    Article  Google Scholar 

  26. Laflin, J., Anderson, K.S., Khan, I.M., Poursina, M.: New and extended applications of the divide-and-conquer algorithm for multibody dynamics. J. Comput. Nonlinear Dyn. 9, 041004 (2014). doi:10.1115/1.4027869

    Article  Google Scholar 

  27. Laflin, J.J., Anderson, K.S., Hans, M.: Enhancing the Performance of the DCA When Forming and Solving the Equations of Motion for Multibody Systems, pp. 19–31. Springer, Cham (2016). doi:10.1007/978-3-319-30614-8_2

    Google Scholar 

  28. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practice. Marcel Dekker, New York (2003)

    Book  Google Scholar 

  29. Luh, J.S.Y., Walker, M.W., Paul, R.P.C.: On-line computational scheme for mechanical manipulators. J. Dyn. Syst. Meas. Control 102, 69–76 (1980)

    Article  MathSciNet  Google Scholar 

  30. Malczyk, P., Fraczek, J.: Lagrange multipliers based divide and conquer algorithm for dynamics of general multibody systems. In: Proceedings of the ECCOMAS Thematic Conference—Multibody Systems Dynamics, Warsaw, Poland (2009)

    Google Scholar 

  31. Malczyk, P., Frączek, J.: Molecular dynamics simulation of simple polymer chain formation using divide and conquer algorithm based on the augmented Lagrangian method. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. (2014). doi:10.1177/1464419314549875

    Google Scholar 

  32. Malczyk, P., Janusz Fraczek, J.C.: Parallel index-3 formulation for real-time multibody dynamics simulations. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland (2010)

    Google Scholar 

  33. Masarati, P.: Computed torque control of redundant manipulators using general-purpose software in real-time. Multibody Syst. Dyn. 32(4), 403–428 (2013). doi:10.1007/s11044-013-9377-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Mukherjee, R., Anderson, K.S.: A logarithmic complexity divide-and-conquer algorithm for multi-flexible articulated body systems. J. Comput. Nonlinear Dyn. 2(1), 10–21 (2007)

    Article  Google Scholar 

  35. Mukherjee, R., Anderson, K.S.: An orthogonal complement based divide-and-conquer algorithm for constrained multibody systems. Nonlinear Dyn. 48(1–2), 199–215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mukherjee, R.M., Anderson, K.S.: Efficient methodology for multibody simulations with discontinuous changes in system definition. Multibody Syst. Dyn. 18, 145–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mukherjee, R.M., Bhalerao, K.D., Anderson, K.S.: A divide-and-conquer direct differentiation approach for multibody system sensitivity analysis. Struct. Multidiscip. Optim. 35, 413–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mukherjee, R.M., Crozier, P.S., Plimpton, S.J., Anderson, K.S.: Substructured molecular dynamics using multibody dynamics algorithms. Int. J. Non-Linear Mech. 43(10), 1040–1055 (2008). Non-linear Mechanics and Dynamics of Macromolecules

    Article  MATH  Google Scholar 

  39. Neilan, P.E.: Efficient computer simulation of motions of multibody systems. PhD thesis, Stanford University (1986)

  40. Poursina, M., Anderson, K.S.: An extended divide-and-conquer algorithm for a generalized class of multibody constraints. Multibody Syst. Dyn. 29(3), 235–254 (2012). doi:10.1007/s11044-012-9324-9

    Article  MathSciNet  Google Scholar 

  41. Poursina, M., Anderson, K.S.: Canonical ensemble simulation of biopolymers using a coarse-grained articulated generalized divide-and-conquer scheme. Comput. Phys. Commun. 184(3), 652–660 (2013). doi:10.1016/j.cpc.2012.10.029

    Article  MathSciNet  MATH  Google Scholar 

  42. Poursina, M., Bhalerao, K.D., Flores, S., Anderson, K.S., Laederach, A.: Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. Methods Enzymol. 487, 73–98 (2011)

    Article  Google Scholar 

  43. Poursina, M., Khan, I., Anderson, K.S.: Model transitions and optimization problem in multi-flexible-body modeling of biopolymers. In: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, no. DETC2011-48386 (2011)

    Google Scholar 

  44. Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  45. Rosenthal, D.: An order n formulation for robotic systems. J. Astronaut. Sci. 38(4), 511–529 (1990)

    Google Scholar 

  46. Rosenthal, D.E., Sherman, M.A.: High performance multibody simulations via symbolic equation manipulation and Kane’s method. J. Astronaut. Sci. 34(3), 223–239 (1986)

    Google Scholar 

  47. Rudas, I.J., Toth, A.: Efficient recursive algorithm for inverse dynamics. Mechatronics 3(2), 205–214 (1993). Special Issue Mechatronics in Hungary. doi:10.1016/0957-4158(93)90051-3

    Article  Google Scholar 

  48. Stepanenko, Y., Vukobratović, M.: Dynamics of articulated open-chain active mechanisms. Math. Biosci. 28(1), 137–170 (1976). doi:10.1016/0025-5564(76)90099-7

    Article  MathSciNet  Google Scholar 

  49. Vaidehi, N., Jain, A., Goddard, W.A.: Constant temperature constrained molecular dynamics: the Newton–Euler inverse mass operator method. J. Phys. Chem. 100(25), 10,508–10,517 (1996)

    Article  Google Scholar 

  50. Vereshchagin, A.F.: Computer simulation of the dynamics of complicated mechanisms of robot-manipulators. Eng. Cybern. 12(6), 65–70 (1974)

    Google Scholar 

  51. Vukobratovic, M., Kircasnki, N.: Implementation of highly efficient analytical robot models on microcomputers. In: Theory and Practice of Robots and Manipulators (1985)

    Google Scholar 

  52. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms. J. Dyn. Syst. Meas. Control 104, 205–211 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Poursina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingsley, C., Poursina, M. Extension of the divide-and-conquer algorithm for the efficient inverse dynamics analysis of multibody systems. Multibody Syst Dyn 42, 145–167 (2018). https://doi.org/10.1007/s11044-017-9591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9591-6

Keywords

Navigation