Skip to main content
Log in

Analytic solution for planar indeterminate impact problems using an energy constraint

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This work proposes an analytic method for resolving planar multi-point indeterminate impact problems for rigid-body systems. An event-based approach is used to detect impact events, and constraints consistent with the rigid-body assumption are used to resolve the indeterminacy associated with multi-point impact analysis. The work-energy relation is utilized to determine post-impact velocities based on an energetic coefficient of restitution to model energy dissipation, thereby yielding an energetically consistent set of post-impact velocities based on Stronge’s energetic coefficient of restitution for the treatment of rigid impacts. The effect of stick–slip transition is analyzed based on Coulomb friction. This paper also discusses the transition from impact to contact. This analysis is essential for considering the rocking block problem that is used as an example herein. The predictions of the model for the rocking block problem are compared to experimental results published in the literature. An example of a planar ball undergoing two-point impact is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Djerassi, S.: Collision with friction; Part B: Poisson’s and Stronge’s hypotheses. Multibody Syst. Dyn. 21(1), 55–70 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Song, P., Krauss, P., Dupont, P.: Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. J. Appl. Mech. 68(1), 118–128 (2000)

    Article  Google Scholar 

  3. Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004)

    Article  MATH  Google Scholar 

  4. Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16(3), 263–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anitescu, M., Potra, F.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chatterjee, A.: On the realism of complementarity conditions in rigid body collisions. Nonlinear Dyn. 20(2), 159–168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lankarani, H.: Contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Article  Google Scholar 

  8. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 2nd edn. Springer, London (1999)

    Book  MATH  Google Scholar 

  10. Leine, R., Van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints, vol. 36. Springer, Berlin (2007)

    MATH  Google Scholar 

  11. Keller, J.: Impact with friction. J. Appl. Mech. 53(1), 1–4 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Stronge, W.: Smooth dynamics of oblique impact with friction. Int. J. Impact Eng. 51, 36–49 (2013)

    Article  Google Scholar 

  13. Bergés, P., Bowling, A.: Rebound, slip, and compliance in the modeling and analysis of discrete impacts in legged locomotion. J. Vib. Control 17(12), 1407–1430 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Djerassi, S.: Stronge’s hypothesis-based solution to the planar collision-with-friction problem. Multibody Syst. Dyn. 24(4), 493–515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rodriguez, A., Bowling, A.: Solution to indeterminate multi-point impact with frictional contact using constraints. Multibody Syst. Dyn. 28(4), 313–330 (2012)

    Article  MathSciNet  Google Scholar 

  16. Wang, Y., Kumar, V., Abel, J.: Dynamics of rigid bodies undergoing multiple frictional contacts. In: Proc-IEEE Int’l Conference on Robotics and Automation, vol. 3, pp. 2764–2769 (1992)

    Google Scholar 

  17. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464(2100), 3193–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2107), 2267–2292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brake, M.: An analytical elastic-perfectly plastic contact model. Int. J. Solids Struct. 49(22), 3129–3141 (2012)

    Article  Google Scholar 

  20. Jackson, R.L., Green, I., Marghitu, D.B.: Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn. 60(3), 217–229 (2010)

    Article  MATH  Google Scholar 

  21. Zait, Y., Zolotarevsky, V., Kligerman, Y., Etsion, I.: Multiple normal loading-unloading cycles of a spherical contact under stick contact condition. J. Tribol. 132(4), 041401 (2010)

    Article  Google Scholar 

  22. Kane, T., Levinson, D.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  23. Marghitu, D., Stoenescu, E.: Rigid body impact with moment of rolling friction. Nonlinear Dyn. 50(3), 597–608 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Boulanger, G.: Sur le choc avec frottement des corps non parfaitement élastiques. Rev. Sci. 77, 325–327 (1939)

    MATH  Google Scholar 

  25. Routh, E.J., et al.: Dynamics of a System of Rigid Bodies. Dover, New York (1960)

    MATH  Google Scholar 

  26. Stronge, W.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  27. Najafabadi, S., Kovecses, J., Angeles, J.: Generalization of the energetic coefficient of restitution for contacts in multibody systems. J. Comput. Nonlinear Dyn. 3(4), 70–84 (2008)

    Article  Google Scholar 

  28. Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2111), 3323–3339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 465(2107), 2267–2292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jackson, R., Green, I., Marghitu, D.: Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn. 60(3), 217–229 (2010)

    Article  MATH  Google Scholar 

  31. Brach, R.: Formulation of rigid body impact problems using generalized coefficients. Int. J. Eng. Sci. 36(1), 61–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rodriguez, A., Bowling, A.: Study of Newton’s cradle using a new discrete approach. Multibody Syst. Dyn. 33(1), 61–92 (2015)

    Article  MathSciNet  Google Scholar 

  33. Brogliato, B., Ten Dam, A., et al.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev. 55(2), 107–149 (2002)

    Article  Google Scholar 

  34. Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13(4), 447–463 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mouri, T., Yamada, T., Iwai, A., Mimura, N., Funahashi, Y.: Identification of contact conditions from contaminated data of contact force and moment. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 597–603 (2001)

    Google Scholar 

  36. Bowling, A.: Dynamic performance, mobility, and agility of multi-legged robots. J. Dyn. Syst. Meas. Control 128(4), 765–777 (2006)

    Article  Google Scholar 

  37. Karnopp, D.: Computer simulation of stick–slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107(1), 100–103 (1985)

    Article  Google Scholar 

  38. Haessig, D., Friedland, B.: On the modeling and simulation of friction. Am. Control 113(3), 354–362 (1991)

    Google Scholar 

  39. Han, I., Gilmore, B.: Multi-body impact motion with friction-analysis, simulation, and experimental validation. J. Mech. Des. 115(3), 412–422 (1993)

    Article  Google Scholar 

  40. Zhang, F., Yeddanapudi, M., Mosterman, P.J.: Zero-crossing location and detection algorithms for hybrid system simulation. IFAC Proc. Vol. 41(2), 7967–7972 (2008)

    Article  Google Scholar 

  41. Mosterman, P.J.: An overview of hybrid simulation phenomena and their support by simulation packages. In: International Workshop on Hybrid Systems: Computation and Control, pp. 165–177. Springer, Berlin (1999)

    Chapter  Google Scholar 

  42. Utkin, V.: Chattering problem. IFAC Proc. Vol. 44(1), 13374–13379 (2011)

    Article  Google Scholar 

  43. Aljarbouh, A., Caillaud, B.: Chattering-free simulation of hybrid dynamical systems with the functional mock-up interface 2.0. In: The First Japanese Modelica Conferences, vol. 124(013), pp. 95–105 (2016)

    Google Scholar 

  44. Pennestrı, V.P., Valentini, P.: Coordinate reduction strategies in multibody dynamics: a review. In: Proceedings of the Conference on Multibody System Dynamics (2007)

    Google Scholar 

  45. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)

    Article  Google Scholar 

  46. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ostermeyer, G.-P.: On Baumgarte stabilization for differential algebraic equations. In: Real-Time Integration Methods for Mechanical System Simulation, pp. 193–207. Springer, Berlin (1990)

    Chapter  Google Scholar 

  48. Nikravesh, C., Nikravesh, P.: An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems. J. Mech. Transm. Autom. Des. 107, 488–492 (1985)

    Article  Google Scholar 

  49. Park, K., Chiou, J.: Stabilization of computational procedures for constrained dynamical systems. J. Guid. Control Dyn. 11(4), 365–370 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bayo, E., De Jalon, J.G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71(2), 183–195 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wehage, R., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)

    Article  Google Scholar 

  52. García de Jalón, J., Unda, J., Avello, A., Jiménez, J.: Dynamic analysis of three-dimensional mechanisms in “natural” coordinates. J. Mech. Transm. Autom. Des. 109(4), 460–465 (1987)

    Article  MATH  Google Scholar 

  53. Liang, C., Lance, G.M.: A differentiable null space method for constrained dynamic analysis. J. Mech. Transm. Autom. Des. 109(3), 405–411 (1987)

    Article  Google Scholar 

  54. Kim, S., Vanderploeg, M.: Qr decomposition for state space representation of constrained mechanical dynamic systems. J. Mech. Trans 108(2), 183–188 (1986)

    Article  Google Scholar 

  55. Amirouche, F., Ider, S.: Coordinate reduction in the dynamics of constrained multibody systems-a new approach. J. Appl. Mech. 55, 899 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. Righetti, L., Buchli, J., Mistry, M., Schaal, S.: Inverse dynamics control of floating-base robots with external constraints: a unified view. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1085–1090. IEEE Press, New York (2011)

    Google Scholar 

  57. Mistry, M., Buchli, J., Schaal, S.: Inverse dynamics control of floating base systems using orthogonal decomposition. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3406–3412. IEEE Press, New York (2010)

    Google Scholar 

  58. Shampine, L.F., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Dormand, J., Prince, P.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  60. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Choi, J., Ryu, H., Kim, C., Choi, J.: An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst. Dyn. 23(1), 99–120 (2010)

    Article  MATH  Google Scholar 

  62. Lopes, D., Silva, M., Ambrosio, J., Flores, P.: A mathematical framework for contact detection between quadric and superquadric surfaces. Multibody Syst. Dyn. 24(3), 255–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhang, H., Brogliato, B., Liu, C.: Dynamics of planar rocking-blocks with Coulomb friction and unilateral constraints: comparisons between experimental and numerical data. Multibody Syst. Dyn. 32(1), 1–25 (2014)

    Article  MathSciNet  Google Scholar 

  64. Brogliato, B., Zhang, H., Liu, C.: Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. Multibody Syst. Dyn. 27(3), 351–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Hurmuzlu, Y., Génot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40(10), 1647–1664 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  66. Grizzle, J.W., Chevallereau, C., Sinnet, R.W., Ames, A.D.: Models, feedback control, and open problems of 3d bipedal robotic walking. Automatica 50(8), 1955–1988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Housner, G.W.: The behavior of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53(2), 403–417 (1963)

    Google Scholar 

  68. Yim, C.-S., Chopra, A.K., Penzien, J.: Rocking response of rigid blocks to earthquakes. Earthq. Eng. Struct. Dyn. 8(6), 565–587 (1980)

    Article  Google Scholar 

  69. Liu, T.: Non-jamming conditions in multi-contact rigid-body dynamics. Multibody Syst. Dyn. 22(3), 269–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhao, Z., Liu, C., Brogliato, B.: Energy dissipation and dispersion effects in granular media. Phys. Rev. E 78(3), 031307 (2008)

    Article  MathSciNet  Google Scholar 

  71. Liu, C., Zhao, Z., Brogliato, B.: Variable structure dynamics in a bouncing dimer. Ph.D. Dissertation, INRIA (2008)

  72. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. II. numerical algorithm and simulation results. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 465(2101), 1–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  73. Peña, F., Prieto, F., Lourenço, P.B., Campos Costa, A., Lemos, J.V.: On the dynamics of rocking motion of single rigid-block structures. Earthq. Eng. Struct. Dyn. 36(15), 2383–2399 (2007)

    Article  Google Scholar 

  74. Peña, F., Lourenço, P.B., Campos-Costa, A.: Experimental dynamic behavior of free-standing multi-block structures under seismic loadings. J. Earthq. Eng. 12(6), 953–979 (2008)

    Article  Google Scholar 

  75. Giouvanidis, A., Dimitrakopoulos, I.: Modelling contact in rocking structures with a nonsmooth dynamics approach. In: ECCOMAS Congress 2016—Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering (2016)

    Google Scholar 

  76. Zhang, H., Brogliato, B.: The planar rocking-block: analysis of kinematic restitution laws, and a new rigid-body impact model with friction. Ph.D. Dissertation, INRIA (2011)

  77. Bedford, A., Fowler, W.: Engineering Mechanics: Dynamics. Pearson Education, Upper Saddle River (2008)

    Google Scholar 

  78. Craig, J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Bowling.

Appendices

Appendix A: Energy plots

The energy plots are included here to show energy consistency for the collisions simulated for the planar rocking block (frictionless and frictional) and planar ball examples. The drops in total energy shown in Figs. 16, 17, and 18 correspond to the energy losses specified by the global ECOR and friction analyzed in the previous sections.

Fig. 16
figure 16

Energy consistency throughout the simulation for (a) frictionless rocking block, and (b) frictional rocking block examples (Color figure online)

Fig. 17
figure 17

Energy consistency throughout the simulation for the planar ball example (Color figure online)

Fig. 18
figure 18

Energy consistency throughout the simulation for (a) Specimen 1, (b) Specimen 2, (c) Specimen 4 (Color figure online)

Appendix B: Velocity projection method

Consider for example two impact points, 1 and 2, located on a rigid body. Using classical rigid-body dynamics [77], the difference between the velocities of these two impact points is found as

$$\begin{aligned} {\mathbf{v}}_{1} - \mathbf{v}_{2} = { \boldsymbol{\omega }} \times (\mathbf{P}_{O1} - \mathbf{P}_{O2}) \end{aligned}$$
(54)

where \({\boldsymbol{\omega }}\) is the angular velocity of the body and \(\mathbf{P}_{Oi}\) is the position vector of impact point \(i\) with respect to the body’s mass center. If the dot product of the unit direction between impact points 1 and 2 is applied to each side of Eq. (54), such that the right-hand side is zero, then the rigid-body assumption defines

$$\begin{aligned} (\mathbf{v}_{1} - \mathbf{v}_{2}) \cdot \frac{(\mathbf{P}_{O1} - \mathbf{P}_{O2})}{|(\mathbf{P}_{O1} - \mathbf{P}_{O2})|} = 0 \end{aligned}$$
(55)

Additional rigid-body constraints can be formulated using this method with the consideration of more impact points. The benefit is clear from the simple nature of Eq. (55) and permits the definition of a kinematic relationship among a collection of impact points on a rigid body.

2.1 B.1 Rocking block

Evaluating the terms involved in the constraint for the planar rocking block yields

$$\begin{aligned} \bigl( (v_{t1} - v_{t2}) \mathbf{N}_{1} + (v_{n1} - v_{n2}) \mathbf{N} _{2} \bigr) \cdot ( -\mathbf{N_{1}} ) = v_{t1} - v _{t2} = 0 \end{aligned}$$
(56)

The velocity constraint obtained in Eq. (56) is used to constrain one of the tangential velocities. Consider an example where \(v_{t1}\) is constrained. This is accomplished by solving for this velocity term and substituting the expression into Eq. (58) which gives,

$$\begin{aligned} {\boldsymbol{\vartheta }} = \left[ \textstyle\begin{array}{c} v_{t1} \\ v_{n1} \\ v_{t2} \\ v_{n2} \\ \end{array}\displaystyle \right] = \left[ \textstyle\begin{array}{c} v_{t2} \\ v_{n1} \\ v_{t2} \\ v_{n2} \\ \end{array}\displaystyle \right] = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\displaystyle \right ] \left [ \textstyle\begin{array}{c} v_{n1} \\ v_{t2} \\ v_{n2} \end{array}\displaystyle \right ] = \textstyle\begin{array}{c} P\ {\boldsymbol{\vartheta }}^{*} \\ \end{array}\displaystyle \end{aligned}$$
(57)

where \(P\) is a matrix of full rank containing the velocity constraint and \({\boldsymbol{\vartheta }}^{*}\) contains the constrained velocity space. The dual property of the impact Jacobian defines a relationship between velocities and forces, which is derived based on the principle of virtual work and conservation of energy theory [78],

$$\begin{aligned} {\boldsymbol{\vartheta }} = \left[ \textstyle\begin{array}{c} v_{t1} \\ v_{n1} \\ v_{t2} \\ v_{n2} \end{array}\displaystyle \right] = J \dot{\mathbf{q}} ,\quad \quad {\boldsymbol{\varGamma }} = J^{T} \mathbf{F} = J^{T} \left[ \textstyle\begin{array}{c} f_{t1} \\ f_{n1} \\ f_{t2} \\ f_{n2} \end{array}\displaystyle \right] \end{aligned}$$
(58)

such that

$$\begin{aligned} {\boldsymbol{\varGamma }} = J^{T} \mathbf{F} = J^{T} \bigl(P^{+} \bigr)^{T} \mathbf{F}^{*} \end{aligned}$$
(59)

Equation (59) yields

$$\begin{aligned} {\mathbf{F}} = \bigl( P^{+} \bigr) ^{T} \mathbf{F}^{*} \quad \mbox{or} \quad P^{T} \mathbf{F} = \mathbf{F}^{*} \end{aligned}$$
(60)

where \(P^{+}\) is the left-inverse of \(P\). It is incorrect to assume that the constrained force space \(\mathbf{F}^{*}\) will involve the same terms as in the constrained velocity space \({\boldsymbol{\vartheta }}^{*}\). Therefore, consider the second expression in Eq. (60) where \(\mathbf{F}^{*}\) is solved:

$$\begin{aligned} {\mathbf{F}}^{*} = P^{T} \mathbf{F} = \left[ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\displaystyle \right] \left [ \textstyle\begin{array}{c} f_{t1} \\ f_{n1} \\ f_{t2} \\ f_{n2} \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{c} f_{n1} \\ f_{t1} + f_{t2} \\ f_{n2} \end{array}\displaystyle \right ] \end{aligned}$$
(61)

such that

$$\begin{aligned} \left[ \textstyle\begin{array}{c} f_{t1} \\ f_{n1} \\ f_{t2} \\ f_{n2} \end{array}\displaystyle \right] = \mathbf{F} = \bigl(P^{+} \bigr)^{T} \mathbf{F}^{*} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0.5 & 0 \\ 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 1 \end{array}\displaystyle \right ] \left [ \textstyle\begin{array}{c} f_{n1} \\ f_{t1} + f_{t2} \\ f_{n2} \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{c} 0.5 ( f_{t1} + f_{t2} ) \\ f_{n1} \\ 0.5 ( f_{t1} + f_{t2} ) \\ f_{n2} \end{array}\displaystyle \right ] \end{aligned}$$
(62)

The first and third relations yield the same force constraint,

$$\begin{aligned} f_{t1} - f_{t2} = 0 \end{aligned}$$
(63)

Applying a definite integration of Eq. (63), the constraint is expressed in terms of impulses as

$$\begin{aligned} p_{t1} - p_{t2} = 0 \end{aligned}$$
(64)

Note that for a frictionless case (\(\mu_{i} = 0\)) the tangential forces vanish, which eliminates the indeterminacy in the system equations of motion.

2.2 B.2 Planar ball

Evaluating the terms involved in the constraint for the planar ball shown in Fig. 1(b) yields

$$\begin{aligned} \bigl( (v_{t1} - v_{n2}) \mathbf{N}_{1} + (v_{n1} - v _{t2}) \mathbf{N}_{2} \bigr) \cdot \biggl( -\frac{1}{\sqrt{2}} \mathbf{N_{1}} - \frac{1}{\sqrt{2}} \mathbf{N_{2}} \biggr) = -v _{t1} - v_{n1} + v_{t2} + v_{n2} = 0 \end{aligned}$$
(65)

The velocity constraint obtained in Eq. (65) is used to constrain one of the tangential velocities. Consider an example where \(v_{t1}\) is constrained. This is accomplished by solving for this velocity term in Eq. (65) which gives

$$\begin{aligned} {\boldsymbol{\vartheta }} = \left[ \textstyle\begin{array}{c} v_{t1} \\ v_{n1} \\ v_{t2} \\ v_{n2} \\ \end{array}\displaystyle \right] = \left[ \textstyle\begin{array}{c} -v_{n1} + v_{t2} + v_{n2} \\ v_{n1} \\ v_{t2} \\ v_{n2} \\ \end{array}\displaystyle \right] = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} -1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\displaystyle \right ] \left [ \textstyle\begin{array}{c} v_{n1} \\ v_{t2} \\ v_{n2} \end{array}\displaystyle \right ] = P {\boldsymbol{\vartheta }}^{*} \end{aligned}$$
(66)

where \(P\) is a matrix of full rank containing the velocity constraint and \({\boldsymbol{\vartheta }}^{*}\) contains the constrained velocity space. Applying the dual property of the impact Jacobian and solving for the constrained force space yields

$$\begin{aligned} {\mathbf{F}}^{*} = P^{T} \mathbf{F} = \left[ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\displaystyle \right] \left [ \textstyle\begin{array}{c} f_{t1} \\ f_{n1} \\ f_{t2} \\ f_{n2} \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{c} -f_{t1} + f_{n1} \\ f_{t1} + f_{t2} \\ f_{t1} + f_{n2} \end{array}\displaystyle \right ] \end{aligned}$$
(67)

Using this result in the first relation in Eq. (60) gives

$$\begin{aligned} \left[ \textstyle\begin{array}{c} f_{t1} \\ f_{n1} \\ f_{t2} \\ f_{n2} \end{array}\displaystyle \right] = &\mathbf{F} = \bigl(P^{+} \bigr)^{T} \mathbf{F}^{*} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} -0.25 & 0.25 & 0.25 \\ 0.75 & 0.25 & 0.25 \\ 0.25 & 0.75 & -0.25 \\ 0.25 & -0.25 & 0.75 \end{array}\displaystyle \right ] \left [ \textstyle\begin{array}{c} -f_{t1} + f_{n1} \\ f_{t1} + f_{t2} \\ f_{t1} + f_{n2} \end{array}\displaystyle \right ] \\ =& \left [ \textstyle\begin{array}{c} 0.75 f_{t1} - 0.25 f_{n1} + 0.25 f_{t2} + 0.25 f_{n2} \\ -0.25 f_{t1} + 0.75 f_{n1} + 0.25 f_{t2} + 0.25 f_{n2} \\ 0.25 f_{t1} + 0.25 f_{n1} + 0.75 f_{t2} - 0.25 f_{n2} \\ 0.25 f_{t1} + 0.25 f_{n1} - 0.25 f_{t2} + 0.75 f_{n2} \end{array}\displaystyle \right ] \end{aligned}$$
(68)

such that every relation in Eq. (68) yields the same force constraint:

$$\begin{aligned} f_{t1} + f_{n1} - f_{t2} - f_{n2} = 0 \end{aligned}$$
(69)

Applying a definite integration of Eq. (69), the constraint is expressed in terms of impulses as

$$\begin{aligned} p_{t1} + p_{n1} - p_{t2} - p_{n2} = 0 \end{aligned}$$
(70)

Note again that for a frictionless case (\(\mu_{i} = 0\)) the tangential forces vanish, which eliminates the indeterminacy in the system equations of motion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Rodriguez, A. & Bowling, A. Analytic solution for planar indeterminate impact problems using an energy constraint. Multibody Syst Dyn 42, 347–379 (2018). https://doi.org/10.1007/s11044-017-9590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9590-7

Keywords

Navigation