Multibody System Dynamics

, Volume 43, Issue 2, pp 131–151 | Cite as

Use of performance indicators in the analysis of running gait impacts

  • Rosa Pàmies-VilàEmail author
  • Francisco González
  • József Kövecses
  • Josep M. Font-Llagunes


Foot-ground impact is a critical event during the running cycle. In this work, three performance indicators were used to characterize foot-ground impact intensity: the effective pre-impact kinetic energy, representative elements of the effective mass matrix, and the critical coefficient of friction. These performance indicators can be obtained from the inertial properties of the biomechanical system and its pre-impact mechanical state, avoiding the need to carry out force measurements. Ground reaction forces and kinematic data were collected from the running motion of an adult that adopted both rear-foot and fore-foot strike patterns. Different running cycles were analysed and statistical tests performed. Results showed that the three proposed indicators are able to illustrate significant differences between fore-foot and rear-foot strike impacts. They also support the hypothesis that fore-foot strike reduces impact intensity. On the other hand, a higher likelihood of slipping during the contact onset is associated with fore-foot strike pattern.


Biomechanics Running Impact dynamics Foot strike Performance indicators 



This research was supported in part by he Natural Sciences and Engineering Research Council of Canada. The second author was funded by the Spanish Ministry of Economy through its post-doctoral research program Juan de la Cierva, contract No. JCI-2012-12376. The support is gratefully acknowledged.


  1. 1.
    Addison, B.J., Lieberman, D.E.: Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness. J. Biomech. 48(7), 1318–1324 (2015). doi: 10.1016/j.jbiomech.2015.01.029 CrossRefGoogle Scholar
  2. 2.
    Alonso, F.J., Castillo, J.M.D., Pintado, P.: Application of singular spectrum analysis to the smoothing of raw kinematic signals. J. Biomech. 38(5), 1085–1092 (2005). doi: 10.1016/j.jbiomech.2004.05.031 CrossRefGoogle Scholar
  3. 3.
    Alonso, F.J., Cuadrado, J., Lugrís, U., Pintado, P.: A compact smoothing-differentiation and projection approach for the kinematic data consistency of biomechanical systems. Multibody Syst. Dyn. 24(1), 67–80 (2010). doi: 10.1007/s11044-010-9191-1 CrossRefzbMATHGoogle Scholar
  4. 4.
    Altman, A.R., Davis, I.S.: A kinematic method for footstrike pattern detection in barefoot and shod runners. Gait Posture 35(2), 298–300 (2012). doi: 10.1016/j.gaitpost.2011.09.104 CrossRefGoogle Scholar
  5. 5.
    Belli, A., Bui, P., Berger, A., Geyssant, A., Lacour, J.R.: A treadmill ergometer for three-dimensional ground reaction forces measurement during walking. J. Biomech. 34(1), 105–112 (2001). doi: 10.1016/S0021-9290(00)00125-1 CrossRefGoogle Scholar
  6. 6.
    Cavanagh, P.R., Lafortune, M.A.: Ground reaction forces in distance running. J. Biomech. 13(5), 397–406 (1980). doi: 10.1016/0021-9290(80)90033-0 CrossRefGoogle Scholar
  7. 7.
    Chi, K.J., Schmitt, D.: Mechanical energy and effective foot mass during impact loading of walking and running. J. Biomech. 38(7), 1387–1395 (2005). doi: 10.1016/j.jbiomech.2004.06.020 CrossRefGoogle Scholar
  8. 8.
    Clark, K.P., Ryan, L.J., Weyand, P.G.: Foot speed, foot-strike and footwear: linking gait mechanics and running ground reaction forces. J. Exp. Biol. 217, 2037–2040 (2014). doi: 10.1242/jeb.099523 CrossRefGoogle Scholar
  9. 9.
    De Wit, B., De Clerq, D., Aerts, P.: Biomechanical analysis of the stance phase during barefoot and shod running. J. Biomech. 33(3), 269–278 (2000). doi: 10.1016/S0021-9290(99)00192-X CrossRefGoogle Scholar
  10. 10.
    Divert, C., Mornieux, G., Baur, H., Mayer, F., Belli, A.: Mechanical comparison of barefoot and shod running. Int. J. Sports Med. 26(7), 593–598 (2005). doi: 10.1055/s-2004-821327 CrossRefGoogle Scholar
  11. 11.
    Farley, C.T., González, O.: Leg stiffness and stride frequency in human running. J. Biomech. 29(2), 181–186 (1996). doi: 10.1016/0021-9290(95)00029-1 CrossRefGoogle Scholar
  12. 12.
    Font-Llagunes, J.M., Barjau, A., Pàmies-Vilà, R., Kövecses, J.: Dynamic analysis of impact in swing-through crutch gait using impulsive and continuous contact models. Multibody Syst. Dyn. 28(3), 257–282 (2012). doi: 10.1007/s11044-011-9300-9 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Font-Llagunes, J.M., Kövecses, J.: Dynamics and energetics of a class of bipedal walking systems. Mech. Mach. Theory 44(11), 1999–2019 (2009). doi: 10.1016/j.mechmachtheory.2009.05.003 CrossRefzbMATHGoogle Scholar
  14. 14.
    Gerritsen, K.G., van den Bogert, A.J., Nigg, B.M.: Direct dynamics simulation of the impact phase in heel-toe running. J. Biomech. 28(6), 661–668 (1995). doi: 10.1016/0021-9290(94)00127-P CrossRefGoogle Scholar
  15. 15.
    González, F., Kövecses, J., Font-Llagunes, J.M.: Load assessment and analysis of impacts in multibody systems. Multibody Syst. Dyn. 38(1), 1–19 (2016). doi: 10.1007/s11044-015-9485-4 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hamner, S.R., Seth, A., Delp, S.L.: Muscle contributions to propulsion and support during running. J. Biomech. 43(14), 2709–2716 (2010). doi: 10.1016/j.jbiomech.2010.06.025 CrossRefGoogle Scholar
  17. 17.
    Hanson, N.J., Berg, K., Deka, P., Meendering, J.R., Ryan, C.: Oxygen cost of running barefoot vs. running shod. Int. J. Sports Med. 32(6), 401–406 (2011). doi: 10.1055/s-0030-1265203 CrossRefGoogle Scholar
  18. 18.
    Hirschkorn, M., Kövecses, J.: The role of the mass matrix in the analysis of mechanical systems. Multibody Syst. Dyn. 30(4), 397–412 (2013). doi: 10.1007/s11044-013-9369-4 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kluitenberg, B., Bredeweg, S.W., Zijlstra, S., Zijlstra, W., Buist, I.: Comparison of vertical ground reaction forces during overground and treadmill running. A validation study. BMC Musculoskelet. Disord. 13(1), 235 (2012). doi: 10.1186/1471-2474-13-235 CrossRefGoogle Scholar
  20. 20.
    Kövecses, J.: Dynamics of mechanical systems and the generalized free-body diagram, part I: general formulation. Int. J. Appl. Mech. 75(6, 1–12 (2008). doi: 10.1115/1.2965372 Google Scholar
  21. 21.
    Kövecses, J., Font-Llagunes, J.M.: An eigenvalue problem for the analysis of variable topology mechanical systems. J. Comput. Nonlinear Dyn. 4(3, 1–9 (2009). doi: 10.1115/1.3124784 zbMATHGoogle Scholar
  22. 22.
    Kövecses, J., Kovács, L.: Foot impact in different modes of running: mechanisms and energy transfer. Proc. IUTAM 2, 101–108 (2011). doi: 10.1016/j.piutam.2011.04.011 CrossRefGoogle Scholar
  23. 23.
    Laughton, C.A., Davis, I.M., Hamill, J.: Effect of strike pattern and orthotic intervention on tibial shock during running. J. Appl. Biomech. 19(2), 153–168 (2003). doi: 10.1123/jab.19.2.153 CrossRefGoogle Scholar
  24. 24.
    Lieberman, D.E., Venkadesan, M., Werbel, W.A., Daoud, A.I., D’Andrea, S., Davis, I.S., Mang’Eni, R.O., Pitsiladis, Y.: Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 463, 531–535 (2010). doi: 10.1038/nature08723 CrossRefGoogle Scholar
  25. 25.
    Lopes, D., Neptune, R., Ambrósio, J., Silva, M.: A superellipsoid-plane model for simulating foot-ground contact during human gait. Comput. Methods Biomech. Biomed. Eng. 19(9), 954–963 (2016). doi: 10.1080/10255842.2015.1081181 CrossRefGoogle Scholar
  26. 26.
    Low, D.C., Dixon, S.J.: Footscan pressure insoles: accuracy and reliability of force and pressure measurements in running. Gait Posture 32(4), 664–666 (2010). doi: 10.1016/j.gaitpost.2010.08.002 CrossRefGoogle Scholar
  27. 27.
    Mahboobin, A., Cham, R., Piazza, S.J.: The impact of a systematic reduction in shoe-floor friction on heel contact walking kinematics—a gait simulation approach. J. Biomech. 43(8), 1532–1539 (2010). doi: 10.1016/j.jbiomech.2010.01.040 CrossRefGoogle Scholar
  28. 28.
    Maiwald, C., Grau, S., Krauss, I., Mauch, M., Axmann, D., Horstmann, T.: Reproducibility of plantar pressure distribution data in barefoot running. J. Appl. Biomech. 24(1), 14–23 (2008). doi: 10.1123/jab.24.1.14 CrossRefGoogle Scholar
  29. 29.
    McDougall, C.: Born to Run: A Hidden Tribe, Superathletes, and the Greatest Race the World Has Never Seen, 1st edn. Knopf, New York (2009) Google Scholar
  30. 30.
    McMahon, T.A., Cheng, G.C.: The mechanics of running: how does stiffness couple with speed? J. Biomech. 23(Suppl. 1), 65–78 (1990). doi: 10.1016/0021-9290(90)90042-2 CrossRefGoogle Scholar
  31. 31.
    Neptune, R.R., Wright, I.C., van den Bogert, A.J.: A method for numerical simulation of single limb ground contact events: application to heel-toe running. Comput. Methods Biomech. Biomed. Eng. 3(4), 321–334 (2000). doi: 10.1080/10255840008915275 CrossRefGoogle Scholar
  32. 32.
    Nigg, B.M. (ed.): Biomechanics of Running Shoes. Human Kinetics, Champaign (1986) Google Scholar
  33. 33.
    O’Connor, C.M., Thorpe, S.K., O’Malley, M.J., Vaughan, C.L.: Automatic detection of gait events using kinematic data. Gait Posture 25(3), 469–474 (2007). doi: 10.1016/j.gaitpost.2006.05.016 CrossRefGoogle Scholar
  34. 34.
    Pàmies-Vilà, R.: Application of multibody dynamics techniques to the analysis of human gait. Ph.D. thesis, Universitat Politècnica de Catalunya (2012).
  35. 35.
    Pàmies-Vilà, R., Font-Llagunes, J., Lugrís, U., Cuadrado, J.: Parameter identification method for a three-dimensional foot-ground contact model. Mech. Mach. Theory 75, 107–116 (2014). doi: 10.1016/j.mechmachtheory.2014.01.010 CrossRefGoogle Scholar
  36. 36.
    Riley, P.O., Dicharry, J., Franz, J.R., Casey, K.D.: A kinematics and kinetic comparison of overground and treadmill running. Med. Sci. Sports Exerc. 40(6), 1093–1100 (2008). doi: 10.1249/MSS.0b013e3181677530 CrossRefGoogle Scholar
  37. 37.
    Robbins, S.E., Gouw, G.J., Hanna, A.M.: Running-related injury prevention through innate impact-moderating behavior. Med. Sci. Sports Exerc. 21(2), 130–139 (1989) CrossRefGoogle Scholar
  38. 38.
    Robbins, S.E., Hanna, A.M.: Running-related injury prevention through barefoot adaptations. Med. Sci. Sports Exerc. 19(2), 148–156 (1987) CrossRefGoogle Scholar
  39. 39.
    Rodrigo, S.E., Ambrósio, J.A.C., Tavares da Silva, M.P., Penisi, O.H.: Analysis of human gait based on multibody formulations and optimization tools. Mech. Based Des. Struct. Mach. 36(4), 446–477 (2008). doi: 10.1080/15397730802425497 CrossRefGoogle Scholar
  40. 40.
    Seyfarth, A., Geyer, H., Günther, M., Blickhan, R.: A movement criterion for running. J. Biomech. 35(5), 649–655 (2002). doi: 10.1016/S0021-9290(01)00245-7 CrossRefGoogle Scholar
  41. 41.
    Silva, M.P.T., Ambrósio, J.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8(2), 219–239 (2002). doi: 10.1023/A:1019545530737 CrossRefzbMATHGoogle Scholar
  42. 42.
    Squadrone, R., Gallozzi, C.: Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners. J. Sports Med. Phys. Fit. 49(1), 6–13 (2009) Google Scholar
  43. 43.
    Vaughan, C.L., Davis, B.L., O’Connor, J.C.: Dynamics of Human Gait, 2nd edn. Kiboho, Cape Town (1999) Google Scholar
  44. 44.
    Wright, I., Neptune, R., van den Bogert, A., Nigg, B.: Passive regulation of impact forces in heel-toe running. Clin. Biomech. 13(7), 521–531 (1998). doi: 10.1016/S0268-0033(98)00025-4 CrossRefGoogle Scholar
  45. 45.
    Yong, J.R., Silder, A., Delp, S.L.: Differences in muscle activity between natural forefoot and rearfoot strikers during running. J. Biomech. 47(15), 3593–3597 (2014). doi: 10.1016/j.jbiomech.2014.10.015 CrossRefGoogle Scholar
  46. 46.
    Zelei, A., Bencsik, L., Kovács, L., Stépán, G.: Energy efficient walking and running—impact dynamics based on varying geometric constraints. In: 12th Conference on Dynamical Systems Theory and Applications, Lódź, Poland, pp. 259–270 (2013) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Biomedical Engineering Research Centre (CREB)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Laboratorio de Ingeniería MecánicaUniversity of A CoruñaFerrolSpain
  3. 3.Department of Mechanical Engineering and Centre for Intelligent MachinesMcGill UniversityMontrealCanada

Personalised recommendations