Multibody System Dynamics

, Volume 43, Issue 1, pp 21–36 | Cite as

Study of the dynamic vehicle-track interaction in a railway turnout

  • Antonio Enrique Blanco-Saura
  • José Luis Velarte-González
  • Fran Ribes-Llario
  • Julia Irene Real-Herráiz


This paper analyzes the vertical dynamic response of a railway track subjected to traffic loads in a turnout, especially around the switch blades and the crossing nose. In order to study the influence of vehicle and track parameters on the vehicle-track dynamics, a numerical feedback interaction between a multi-body model of the vehicle and a 3D finite elements model of the track is carried out. For this purpose, two different models are developed. In the first one, the track is modeled by means of a FE model in the time domain through ANSYS software; while in the second one, the vehicle is simulated as a multi-body model by means of VAMPIRE PRO software. The influence of different parameters (e.g., speed, sprung masses, track stiffness and vehicle eigenfrequencies) on the generation of dynamic loads in a turnout, especially in the switch blades and the crossing nose, is studied. Finally, the vibrations induced by the passing of the vehicle are calculated for different scenarios.


Finite element method Multi-body system Rail-wheel interaction Turnout 


  1. 1.
    Jenkins, H., Stephenson, J., Clayton, G., Morland, G., Lyon, D.: The effect of track and vehicle parameters on wheel/rail vertical dynamic forces. Railw. Eng. J. 3(1), 2–16 (1974) Google Scholar
  2. 2.
    Dukkipati, R., Dong, R.: The dynamic effects of conventional freight car running over a dipped-joint. Veh. Syst. Dyn. 31(2), 95–111 (1999) CrossRefGoogle Scholar
  3. 3.
    Torstensson, P., Nielsen, J.: Simulation of dynamic vehicle-track interaction on small radius curves. Veh. Syst. Dyn. 49(11), 1711–1732 (2011) CrossRefGoogle Scholar
  4. 4.
    Menssen, R., Kik, K.: Running through a switch—simulation and test. Veh. Syst. Dyn. 23(1), 378–389 (1994) CrossRefGoogle Scholar
  5. 5.
    Andersson, C., Dahlberg, T.: Wheel/rail impacts at a railway turnout crossing. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 212(2), 123–134 (1998) CrossRefGoogle Scholar
  6. 6.
    Andersson, C., Dahlberg, T.: Load impacts at railway turnout crossing. In: 16th IAVSD Symposium. the Dynamics of Vehicles on Roads and on Tracks—Supplement to Vehicle System Dynamics, Pretoria, South Africa, vol. 33 (2000) Google Scholar
  7. 7.
    Alfi, S., Bruni, S.: Mathematical modelling of train-turnout interaction. Veh. Syst. Dyn. 47(5), 551–574 (2009) CrossRefGoogle Scholar
  8. 8.
    Bruni, S., Anastopoulos, I., Alfi, S., Gazetas, G.: Effects of train impacts on urban turnouts: modelling and validation through measurements. J. Sound Vib. 324, 666–689 (2009) CrossRefGoogle Scholar
  9. 9.
    Pålsson, B., Nielsen, J.: Damage in switches and crossings considering stochastic spread in railway traffic parameters. In: RASD 2010—10th International Conference on Recent Advances in Structural Dynamics, Southampton, UK (2010) Google Scholar
  10. 10.
    Kassa, E., Nielsen, J.: Dynamic train-turnout interaction in an extended frequency range using a detailed model of track dynamics. J. Sound Vib. 320(4), 893–914 (2009) CrossRefGoogle Scholar
  11. 11.
    Carels, P., Ophalffens, K., Beelen, H., Mys, J., Schillemans, L.: On the effects of high resilient undersleeper mats in turn-outs built in main line ballasted track, on ballast degradation, track stability and ground borne noise levels. In: 8th International Workshop on Railway Noise, Buxton, UK (2004) Google Scholar
  12. 12.
    Johansson, A., Nielsen, J., Bolmsvik, R., Karlström, A., Lunden, R.: Under sleeper pads—influence on dynamic train-track interaction. Wear 265(9), 1479–1487 (2008) CrossRefGoogle Scholar
  13. 13.
    Markine, V., Steenbergen, M., Shevtsov, I.: Combatting RCF on switch points by tuning elastic track properties. Wear 271(1), 158–167 (2011) CrossRefGoogle Scholar
  14. 14.
    Markine, V., Shevtsov, I.: Experimental analysis of the dynamic behaviour of railway turnouts. In: Eleventh International Conference on Computational Structures Technology, Stirlingshire, UK (2012) Google Scholar
  15. 15.
    Casanueva, C., Doulgerakis, E., Jönsson, P.-A., Stichel, S.: Influence of switches and crossings on wheel profile evolution in freight vehicles. Veh. Syst. Dyn. 52(supl), 317–337 (2014) CrossRefGoogle Scholar
  16. 16.
    Shu, X., Wilson, N., Sasaoka, C., Elkins, J.: Development of a real-time wheel/rail contact model in NUCARS®1 and application to diamond crossing and turnout design simulations. Veh. Syst. Dyn. 44(suppl), 251–260 (2006) CrossRefGoogle Scholar
  17. 17.
    Johansson, A., Pålsson, B., Ekh, M., Nielsen, J.: Simulation of wheel-rail contact and damage in switches & crossings. Wear 271(1–2), 472–481 (2011) CrossRefGoogle Scholar
  18. 18.
    Pletz, M., Daves, W., Ossberger, H.: A wheelset/crossingmodelregardingimpact, sliding and deformation—explicit finiteelementapproach. Wear 294–295, 446–456 (2012) CrossRefGoogle Scholar
  19. 19.
    Xin, L., Markine, V., Shevtsov, I.: Numerical analysis of the dynamic interaction between wheel set and turnout crossing using the explicit finite element method. Veh. Syst. Dyn. 54(3), 301–327 (2016) CrossRefGoogle Scholar
  20. 20.
    Real, J.I., Zamorano, C., Hernandez, C., Comendador, R., Real, T.: Computational considerations of 3-D finite element method models of railway vibration prediction in ballasted tracks. J. Vibroeng. 16(4), 1709–1722 (2014) Google Scholar
  21. 21.
    Wan, C., Markine, V., Shevtsov, I.: Analysis of train/turnout vertical interaction using a fast numerical model and validation of that model. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 228(7), 730–743 (2013) CrossRefGoogle Scholar
  22. 22.
    Melis, M.: Apuntes de introducción a la dinámica vertical de la vía y a las señales digitales en ferrocarriles, p. 797. Universidad Politécnica de Madrid—Cátedra de Ferrocarriles, Madrid (2008) Google Scholar
  23. 23.
    Galvín, P., Domínguez, J.: Experimental and numerical analyses of vibrations induced by high-speed trains on the Córdoba–Málaga line. Soil Dyn. Earthq. Eng. 29(4), 641–657 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Antonio Enrique Blanco-Saura
    • 1
  • José Luis Velarte-González
    • 1
  • Fran Ribes-Llario
    • 1
  • Julia Irene Real-Herráiz
    • 1
  1. 1.University Institute for Multidisciplinary MathematicsPolytechnic University of ValenciaValenciaSpain

Personalised recommendations