Skip to main content

Fuzzy tuning control approach to perform cooperative object manipulation by a rigid–flexible multibody robot

Abstract

We study cooperative object manipulation control of rigid–flexible multibody systems in space. During such tasks, flexible members like solar panels may get vibrated. Which in turn may lead to some oscillatory disturbing forces on other subsystems and consequently produce errors in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and develop capable model-based controllers for such complicated systems, deriving a dynamics model is required. However, due to practical limitations and real-time implementation, the system dynamics model should require low computations. So, first, to obtain a precise compact dynamics model, the rigid–flexible interactive dynamics modeling (RFIM) approach is briefly introduced. Using this approach, the system is virtually partitioned into two rigid and flexible portions, and a convenient model for control purposes is developed. Next, a fuzzy tuning manipulation control (FTMC) algorithm is developed for a simple conceptual model for cooperative object manipulation. In fact, a suitable setup is designed for practical implementation of this controller. After that, a wheeled mobile robot (WMR) system with flexible appendages is considered as a practical case that necessitates delicate force exertion by several end-effectors to move an object along a desired path. The WMR system contains two cooperative manipulators, appended with two flexible solar panels. To reveal the merits of the developed model-based controller, the maneuver is deliberately planned such that flexible modes of solar panels get stimulated due to arms motion. The obtained results show an effective performance of the proposed approach as will be discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Abbreviations

\(a\) :

Cross sectional of the flexible member

\(\mathbf{C}\) :

Vector of quadratic nonlinear terms of velocity

\(\mathit{EI}\) :

Bending stiffness of flexible member

\(\mathbf{G}\) :

Vector of gravity force affects

\(\underline{\mathbf{G}}\) :

Grasp matrix

\(\mathbf{H}\) :

Positive definite mass matrix of system

\(I\) :

Second moment of area

\(\mathbf{J}_{c}\) :

Jacobean matrix for the manipulators

\(\mathbf{K}\) :

Stiffness matrix of flexible member

\(\underline{\mathbf{K}}_{p},\underline{\mathbf{K}}_{d}\) :

Gain matrix of controller for object

\(\underline{\tilde{\mathbf{K}}}_{p},\underline{\tilde{\mathbf{K}}}_{d}\) :

Gain matrix of controller for system in task space

\(L_{b}\) :

Length of flexible members

\(m^{\{ i \}}\) :

Mass of the \(i\)th flexible body

\(\mathbf{M}_{f}\) :

Positive definition mass matrix of flexible member

\(n_{b}\) :

Number of flexible members

\(\mathbf{q}\) :

Entity vector of generalized coordinate of rigid system

\(\bar{\mathbf{q}}\) :

Entity vector of generalized coordinate of flexible body

\(\bar{\mathbf{q}}_{f}\) :

Vector of elastic generalized coordinate of flexible body

\(\bar{\mathbf{q}}_{r}\) :

Vector of reference or rigid generalized coordinate of flexible body

\(\mathbf{Q}\) :

Vector of generalized forces

\(\mathbf{Q}_{e}\) :

Vector of generalized external forces of the flexible members

\(\tilde{\mathbf{Q}}_{f}\) :

Vector of control forces for object motion

\(\mathbf{Q}_{\mathrm{flex}.}\) :

Vector of generalized forces due to stimulation of the flexible members

\(\tilde{\mathbf{Q}}_{m}\) :

Vector of control forces for end-effector motion

\(\tilde{\mathbf{Q}}_{\mathrm{react}}\) :

Vector of forces in task space that is exerted from object to end-effectors

\(\mathbf{Q}_{v}\) :

Quadratic velocity vector of flexible member

\(\underline{\mathbf{Q}},\underline{\boldsymbol{\rho}}\) :

Symmetric positive definite matrices

\(\mathbf{R}_{\mathrm{C}_{0}},\dot{\mathbf{R}}_{\mathrm{C}_{0}},\ddot{\mathbf{R}}_{\mathrm{C}_{0}}\) :

Vector of position, velocity, and acceleration of robot base’s in inertial frame

\(\mathbf{S}\) :

Shape function of flexible member

\(T\) :

Kinetic energy

\(\bar{\mathbf{u}}_{f}\) :

Displacement field of flexible body

\(V,M\) :

Shear force and bending torque in flexible member

\(\mathbf{x},\dot{\mathbf{x}}\) :

Vector of position and velocity of object

\(\mathbf{X}^{(m)},\dot{\mathbf{X}}^{(m)}\) :

Vector of position and velocity of \(m\)th end-effectors

\(\boldsymbol{\beta}_{0}\) :

Generalized Euler angle variables of the robot base

\(\boldsymbol{\delta}_{0}\) :

Orientation of the body reference

\(\boldsymbol{\theta}\) :

Generalized variables of the robot joints

\(\rho\) :

Mass density of flexible member

\(\boldsymbol{\omega}\) :

Angular velocity

\(\xi\) :

Dimensionless length of the flexible member

\(\{ i \}\) :

Counter of flexible member

\(( i )\) :

Counter of rigid member of manipulators

\(f\) :

Showing flexibility for a part of the system

\(r\) :

Showing rigidity for a part of the system

0:

Index of the base

References

  1. 1.

    Moosavian S. Ali A., Papadopoulos, E.: Free-flying robots in space: an overview of dynamics modelling, planning and control. Robotica 25, 537–547 (2007)

    Article  Google Scholar 

  2. 2.

    Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41, 749–777 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Romdhane, L.: Dynamic analysis of a flexible slider–crank mechanism with clearance. Eur. J. Mech. A, Solids 27, 882–898 (2008)

    Article  MATH  Google Scholar 

  4. 4.

    Zarafshan, P., Moosavian S. Ali A.: Manipulation control of a space robot with flexible solar panels. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada, pp. 1099–1104 (2010)

    Google Scholar 

  5. 5.

    Zarafshan, P., Moosavian S. Ali A.: Control of a space robot with flexible members. In: IEEE International Conference on Robotics and Automation, ICRA2011, Shanghai, China (2011)

    Google Scholar 

  6. 6.

    Ata, A.A., Johar, H.: Dynamic force/motion simulation of a rigid flexible manipulator during task constrained. In: IEEE International Conference on Mechatronics, pp. 268–273 (2004)

    Google Scholar 

  7. 7.

    Yoshida, K., Nakanishi, H., Ueno, H., Inaba, N., Nishmaki, T., Oda, M.: Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite. J. Adv. Robot. 18(2), 175–198 (2004)

    Article  Google Scholar 

  8. 8.

    Simeon, B.: On Lagrange multipliers in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 19(5), 6993–7005 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Fattah, A., Angeles, J., Misra, A.K.: Dynamics of a 3-DOF spatial parallel manipulator with flexible links. In: IEEE International Conference on Robotics and Automation, pp. 627–632 (1995)

    Google Scholar 

  10. 10.

    Korayem, M.H., Basu, A.: Dynamic load carrying capacity of mobile-base flexible joint manipulators. Int. J. Adv. Manuf. Technol. 25(1–2), 62–70 (2005)

    Article  Google Scholar 

  11. 11.

    Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. 56(6), 553–613 (2003)

    Article  Google Scholar 

  12. 12.

    Chtiba, M.O., Choura, S., El-Borgi, S., Nayfeh, A.H.: Confinement of vibrations in flexible structures using supplementary absorbers: dynamic optimization. J. Vib. Control 16(3), 357–376 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Yoshida, K., Nenchev, D.N., Vichitkulsawat, P., Kobayashi, H., Uchiyama, M.: Experiments on the point-to-point operations of a flexible structure mounted manipulator system. J. Adv. Robot. 11(4), 397–411 (1996)

    Article  Google Scholar 

  14. 14.

    Ebrahimi, A., Moosavian S. Ali A., Mirshams, M.: Comparison between minimum and near-minimum time optimal control of a flexible slewing spacecraft. Aerosp. Sci. Technol. 3(3), 135–142 (2006)

    Google Scholar 

  15. 15.

    Shabana, A.A.: Dynamics of Multi-body Systems, 3rd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  16. 16.

    Jain, R., Pathak, P.M.: Trajectory planning of 2 DOF planar space robot without attitude controller. World J. Model. Simul. 4(3), 196–204 (2008)

    Google Scholar 

  17. 17.

    Suleman, A.: Multibody dynamics and nonlinear control of flexible space structures. J. Vib. Control 10(11), 1639–1661 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Ge, X., Liu, Y.: The attitude stability of a spacecraft with two flexible solar arrays in the gravitational field. Chaos Solitons Fractals 37, 108–112 (2008)

    Article  Google Scholar 

  19. 19.

    Pratiher, B., Dwivedy, S.K.: Non-linear dynamics of a flexible single link Cartesian manipulator. Int. J. Non-Linear Mech. 42, 1062–1073 (2007)

    Article  Google Scholar 

  20. 20.

    Ambrosio, J.A.C.: Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)

    Article  MATH  Google Scholar 

  21. 21.

    Schmitke, C., McPhee, J.: Using linear graph theory and the principle of orthogonality to model multibody, multi-domain systems. Adv. Eng. Inform. 22(2), 147–160 (2008)

    Article  Google Scholar 

  22. 22.

    Sadigh, M.J., Misra, A.K.: Stabilizing tethered satellite systems using space manipulators. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1546–1553 (1994)

    Google Scholar 

  23. 23.

    Zohoor, H., Khorsandijou, S.M.: Dynamic model of a flying manipulator with two highly flexible links. Appl. Math. Model 32, 2117–2132 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Deu, J.F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86, 258–265 (2008)

    Article  Google Scholar 

  25. 25.

    Zarafshan, P., Moosavian S. Ali A.: Rigid–flexible interactive dynamics modelling approach. Math. Comput. Model. Dyn. Syst. 18(2), 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. Prentice–Hall of India, New Delhi (2005)

    Google Scholar 

  27. 27.

    Zarafshan, P., Moosavian S. Ali A.: Fuzzy tuning manipulation control of a space robot with passive flexible solar panels. In: Proc. of the IEEE International Conference on Mechatronics and Automation, ICMA, Beijing, China (2011)

    Google Scholar 

  28. 28.

    Rastegari, R., Moosavian S. Ali A.: Multiple impedance control of space free-flying robots via virtual linkages. Acta Astronaut. 66(5), 748–759 (2010)

    Article  Google Scholar 

  29. 29.

    Ahmad, M.A., Suid, M.H., Ramli, M.S., Zawawi, M.A., Ismail, R.M.T.R.: PD fuzzy logic with non-collocated PID approach for vibration control of flexible joint manipulator. In: 6th International Signal Processing and Its Applications, CSPA (2010)

    Google Scholar 

  30. 30.

    Botsali, F.M., Kalyoncu, M., Tinkir, M., Onen, U.: Fuzzy logic trajectory control of flexible robot manipulator with rotating prismatic joint. In: The 2nd International Conference on Computer and Automation Engineering (ICCAE), pp. 35–39 (2011)

    Google Scholar 

  31. 31.

    Chen, W., Yu, Y., Zhao, X., Zhao, L., Sun, Q.: Position control of a 2DOF underactuated planar flexible manipulator. In: IEEE International Conference on Mechatronics and Automation, ICMA, pp. 464–469 (2011)

    Google Scholar 

  32. 32.

    Hogan, N.: Impedance control: an approach to manipulation, Part 1: Theory. Journal of Dynamic Systems, Measurement, and Control 107(1) (1985)

  33. 33.

    Alipour, K., Moosavian S. Ali A., Bahramzadeh, Y.: Dynamics of wheeled mobile robots with flexible suspension: analytical modelling and verification. Int. J. Robot. Autom. 23(4), 242–250 (2008)

    Google Scholar 

  34. 34.

    Katti, V.R., Thyagarajan, K., Shankara, K.N., Kiran Kumar, A.S.: Spacecraft technology. Curr. Sci. 93(12), 1715–1736 (2007)

    Google Scholar 

  35. 35.

    Brennan, M.J., Bonito, J.G., Elliott, S.J., David, A., Pinnington, R.J.: Experimental investigation of different actuator technologies for active vibration control. Smart Mater. Struct. 8, 145–153 (1999)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Zarafshan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarafshan, P., Moosavian, S.A.A. Fuzzy tuning control approach to perform cooperative object manipulation by a rigid–flexible multibody robot. Multibody Syst Dyn 40, 213–233 (2017). https://doi.org/10.1007/s11044-017-9567-6

Download citation

Keywords

  • Space robots
  • Rigid–flexible multibody systems
  • Cooperative object manipulation
  • Fuzzy control