Skip to main content
Log in

Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Capturing the non-cooperative space debris has gained increasing attention in the past decades. As an alternative of the rigid robot, the flexible tether-net space robot systems (TNSRS), like ROGER, are proposed by many research institutes, which can significantly reduce the risk of capturing process. However, their poor manoeuvrability and the lack of abilities to keep the net shape may lead to the failure of the capture process. Thus, a manoeuvrable tether-net space robot system (MTNSRS), as a potential approach to improve TNSRS, is proposed. In order to simplify the dynamics, we introduce the assumption that the Young’s modulus of the cord in the net is infinite when in tension while it is zero when being slack. Then, the contact dynamics of rigid robots is employed to solve the unilateral constraints within the above assumption, and the T3 element is introduced to approximate the shape of the net. Furthermore, the coordinated controller for MTNSRS is designed by transferring the inverse dynamics to be a double-level optimization problem. Finally, the simulation results show that without active control, the net will gradually close in the approaching phase, and this process will be significantly accelerated even by a small dragging force in the connecting tether. It is also shown that our controller can ensure MTNSRS to successfully capture the target and can resist the effects of initial state errors, measurement noise and kinetic parameter errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Asif, S.: Sputnik 50 years later: New evidence on its origins. Acta Astronaut. 63(1–4), 529–539 (2008)

    Google Scholar 

  2. Barbee, B.W., Alfano, S., Pinon, E., Gold, K.: Design of spacecraft missions to remove multiple orbital debris objects. In: Proceedings of the 2011 IEEE Aerospace Conference (2011)

    Google Scholar 

  3. Pate-Cornell, E., Sachon, M.: Risks of particle hits during space walks in low Earth orbit. IEEE Trans. Aerosp. Electron. Syst. 36(4), 134–146 (2001)

    Article  Google Scholar 

  4. Oswald, M., Stabroth, S., Wiedemann, C., Vörsmann, P.: Economic feasibility of space tugs. In: Proceedings of the 55th International Astronautical Congress (2004)

    Google Scholar 

  5. Yu, J., Chen, X.Q., Chen, L.H., Hao, D.: Optimal scheduling of GEO debris removing based on hybrid optimal control theory, vol. 93, pp. 400–409 (2014)

  6. Yoshida, K.: Engineering Test Satellite VII flight experiments for space robot dynamics and control: Theories on laboratory test beds ten years ago, now in orbit. Int. J. Robot. Res. 22(5), 321–335 (2003)

    Article  Google Scholar 

  7. Ohkami, Y., Oda, M.: NASDA’s activities in space robotics. In: European Space Agency, (Special Publication) ESA SP (1999)

    Google Scholar 

  8. Aikenhead, B.A., Daniell, R.G., Davis, F.M.: Canadarm and the space-shuttle. J. Vac. Sci. Technol., A, Vac. Surf. Films 1(2), 126–132 (1983)

    Article  Google Scholar 

  9. Ogilvie, A., Allport, J., Hannah, M., Lymer, J.: Autonomous robotic operations for on-orbit satellite servicing. In: Proceedings of the Society of Photo-optical Instrumentation Engineers (2008)

    Google Scholar 

  10. Mulholland, J.D., Veillet, C.: A space debris primer for astronomers. Space Debris 2(4), 295–317 (2000)

    Article  Google Scholar 

  11. Carroll, J.A.: Space transport development using orbital debris. In: Final Report on NIAC Phase (2002)

    Google Scholar 

  12. Huang, P.F., Hu, Z.H., Meng, Z.J.: Coupling dynamics modelling and optimal coordinated control of tethered space robot. Aerosp. Sci. Technol. 41(2), 36–46 (2015)

    Article  Google Scholar 

  13. Zhang, F., Sharf, I., Misra, A.K., Huang, P.F.: On-line estimation of inertia parameters of space debris for its tether-assisted removal. Acta Astronaut. 107 150–162 (2015)

    Article  Google Scholar 

  14. Huang, P.F., Wang, D.K., Meng, Z.J., Liu, Z.X.: Post-capture attitude control for a tethered space robot–target combination system. Robotica 33(4), 898–919 (2015)

    Article  Google Scholar 

  15. Zhai, G., Qiu, Y., Liang, B., Li, C.: System dynamics and feedforward control for tether-net space robot system. Int. J. Adv. Robot. Syst. 6(2), 137–144 (2009)

    Google Scholar 

  16. Huang, P.F., Zhang, F., Ma, J., Meng, Z.J., Liu, Z.X.: Dynamics and configuration control of the maneuvering-net space robot system. Adv. Space Res. 55(4), 1004–1014 (2015)

    Article  Google Scholar 

  17. Bischof, B., Kerstein, L., Starke, J., Guenther, H., Foth, W.P.: Roger—Robotic geostationary orbit restorer. In: Proceedings of the 54th International Astronautical Congress of the International Astronautical Federation, pp. 1365–1373 (2003)

    Google Scholar 

  18. Kassebom, M., Koebel, D., Tobehn, C., Mahal, S., et al.: Roger—An advanced solution for a geostationary service satellite. In: Proceedings of the 54th International Astronautical Congress of the International Astronautical Federation, pp. 1037–1046 (2003)

    Google Scholar 

  19. Mankala, K.K., Agrawal, S.K.: Dynamic modeling and simulation of impact in tether net/gripper systems. Multibody Syst. Dyn. 11(3), 235–250 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mankala, K.K., Agrawal, S.K.: Dynamic modeling of satellite tether systems using Newton’s laws and Hamilton’s principle. J. Vib. Acoust. Trans. ASME 130(1) (2008)

  21. Williams, P., Yeo, S., Blanksby, C.: Heating and modeling effects in tethered aerocapture missions. J. Guid. Control Dyn. 26(4), 643–654 (2003)

    Article  Google Scholar 

  22. Williams, P., Blanksby, C., Trivailo, P.: In-plane payload capture using tethers. Acta Astronaut. 57(10), 772–787 (2005)

    Article  Google Scholar 

  23. Zhai, G., Qiu, Y., Liang, B., Li, C.: On-orbit capture with flexible tether-net system. Acta Astronaut. 65(5–6), 613–623 (2009)

    Article  Google Scholar 

  24. Zhai, G., Zhang, J.R., Yao, Z.: Circular orbit target capture using space tether-net system. Math. Probl. Eng. (2013)

  25. Forg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14(2), 137–154 (2005)

    Article  MathSciNet  Google Scholar 

  26. Mansard, N., Khatib, O., Kheddar, A.: A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans. Robot. 25(3), 670–685 (2009)

    Article  Google Scholar 

  27. Kanoun, O., Lamiraux, F., Wieber, P.B., Kanehiro, F., Yoshida, E., Laumond, J.P.: Prioritizing linear equality and inequality systems: application to local motion planning for redundant robots. In: Proceedings of IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  28. Klarbring, A.: Mathematical programming in contact problems. In: Aliabadi, M.H. (ed.) Computational Methods for Contact Problems. Elsevier, Amsterdam (1994)

    Google Scholar 

  29. Leamy, M.J., Noor, A.K., Wasfy, T.M.: Dynamic simulation of a tethered satellite system using finite elements and fuzzy sets. Comput. Methods Appl. Mech. Eng. 190(37–38), 4847–4870 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the National Natural Science Foundation of China (Grant No. 11272256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panfeng Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Hu, Z. & Zhang, F. Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system. Multibody Syst Dyn 36, 115–141 (2016). https://doi.org/10.1007/s11044-015-9478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9478-3

Keywords

Navigation