# A multiscale modeling approach for biomolecular systems

- 317 Downloads

## Abstract

This paper presents a new multiscale molecular dynamic model for investigating the effects of external interactions, such as contact and impact, during stepping and docking of motor proteins and other biomolecular systems. The model retains the mass properties ensuring that the result satisfies Newton’s second law. This idea is presented using a simple particle model to facilitate discussion of the rigid body model; however, the particle model does provide insights into particle dynamics at the nanoscale. The resulting three-dimensional model predicts a significant decrease in the effect of the random forces associated with Brownian motion. This conclusion runs contrary to the widely accepted notion that the motor protein’s movements are primarily the result of thermal effects. This work focuses on the mechanical aspects of protein locomotion; the effect ATP hydrolysis is estimated as internal forces acting on the mechanical model. In addition, the proposed model can be numerically integrated in a reasonable amount of time. Herein, the differences between the motion predicted by the old and new modeling approaches are compared using a simplified model of myosin V.

## Keywords

Multibody Dynamics Motor protein Multiscale Modeling Myosin V Contact## Notes

### Acknowledgements

This work was supported by National Science Foundation Grant No. MCB-1148541 and funds from the Department of Mechanical and Aerospace Engineering at the University of Texas at Arlington.

## References

- 1.Abraham, F.F., Broughton, J.Q., Bernstein, N., Kaxiras, E.: Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. EPL (Europhys. Lett.)
**44**(6), 783 (1998). http://stacks.iop.org/0295-5075/44/i=6/a=783 Google Scholar - 2.Acary, V., Brogliato, B.: Lecture Notes in Applied and Computational Mechanics, 1st edn., vol. 35. Springer, Berlin (2008) Google Scholar
- 3.Aksimentiev, A., Balabin, I.A., Fillingame, R.H., Schulten, K.: Insights into the molecular mechanism of rotation in the fo sector of atp synthase. Biophys. J.
**86**(3), 1332–1344 (2004) Google Scholar - 4.Anderson, K., Poursina, M., Bhalerao, K.D.: On adaptive multiscale modeling of biomolecular systems with application in RNA. In: Proceedings of the Joint International Conference on Multibody System Dynamics. Lappeenranta, Finland, (2010) Google Scholar
- 5.Asenjo, A.B., Sosa, H.: A mobile kinesin-head intermediate during the ATP-waiting state. Proc. Natl. Acad. Sci. USA
**106**(14), 5657–5662 (2009) Google Scholar - 6.Atzberger, P.J., Peskin, C.S.: A Brownian dynamics model of kinesin in three dimensions incorporating the force-extension profile of the coiled-coil cargo tether. Bull. Math. Biol.
**68**(1), 131–160 (2006) MathSciNetGoogle Scholar - 7.Austin, R.H.: Nanoscale hydrodynamics in the cell: balancing motorized transport with diffusion. HFSP J.
**2**(5), 262–265 (2008) Google Scholar - 8.Aydt, E.M., Wolff, G., Morano, I.: Molecular modeling of the myosin-S1(A1) isoform. J. Struct. Biol.
**159**(1), 158–163 (2007) Google Scholar - 9.Ayton, G.S., Noid, W.G., Voth, G.A.: Multiscale modeling of biomolecular systems: in serial and in parallel. Curr. Opin. Struct. Biol.
**17**(2), 192–198 (2007) Google Scholar - 10.Baruh, H.: Analytical Dynamics, 1st edn. WCB McGraw-Hill, New York (1999) Google Scholar
- 11.Ben-Ari, I., Boushaba, K., Matzavinos, A., Roitershtein, A.: Stochastic Analysis of the Motion of dna Nanomechanical Bipeds. Bulletin of Mathematical Biology (2010) Google Scholar
- 12.Bevan, D.R., Garst, J.F., Osborne, C.K., Sims, A.M.: Application of molecular modeling to analysis of inhibition of kinesin motor proteins of the BimC subfamily by monastrol and related compounds. Chem. Biodivers.
**2**(11), 1525–1532 (2005) Google Scholar - 13.Bier, M.: Processive motor protein as an overdamped Brownian stepper. Phys. Rev. Lett.
**91**(14), 148104 (2003) Google Scholar - 14.Bier, M.: Modelling processive motor proteins: moving on two legs in the microscopic realm. Contemp. Phys.
**46**(1), 41–51 (2005) MathSciNetGoogle Scholar - 15.Bierbaum, V., Lipowsky, R.: Chemomechanical coupling and motor cycles of myosin V. Biophys. J.
**100**(7), 1747–1755 (2011) Google Scholar - 16.Block, S.M.: Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J.
**92**(9), 2986–2995 (2007) Google Scholar - 17.Bockmann, R.A., Grubmuller, H.: Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase. Nat. Struct. Biol.
**9**(3), 198–202 (2002) Google Scholar - 18.Bolterauer, H., Tuszynski, J.A., Unger, E.: Directed binding—a novel physical mechanism that describes the directional motion of two-headed kinesin motor proteins. Cell Biochem. Biophys.
**42**(2), 95–119 (2005) Google Scholar - 19.Bouzat, S., Falo, F.: The influence of direct motor–motor interaction in models for cargo transport by a single team of motors. Phys. Biol.
**7**(4), 046009 (2010) Google Scholar - 20.Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn.
**22**(1), 27–45 (2009) MATHMathSciNetGoogle Scholar - 21.Bowling, A., Haghshenas-Jaryani, M.: Spatial multibody dynamics of nano-scale motor protein locomotion. In: Proceedings of the 1st International Conference on Bionics and Biomechanics (ICABB) (2010) Google Scholar
- 22.Bowling, A., Palmer, A.F.: The small mass assumption applied to the multibody dynamics of motor proteins. J. Biomech.
**42**(9), 1218–1223 (2009). http://www.jbiomech.com/issues. doi: 10.1016/j.jbiomech.2009.03.017 Google Scholar - 23.Bowling, A., Palmer, A.F., Wilhelm, L.: Contact and impact in the multibody dynamics of motor protein locomotion. Langmuir
**25**(22), 12974–12981 (2009). http://pubs.acs.org/toc/langd5/0/0 Google Scholar - 24.Bueche, F.J.: Introduction to Physics for Scientists and Engineers, 3rd edn. McGraw-Hill Book Company, New York (1979) Google Scholar
- 25.Bulatovic, R.M.: A note on the damped vibrating systems. Theor. Appl. Mech.
**33**(63), 213–221 (2006) MATHMathSciNetGoogle Scholar - 26.Bustamante, C., Keller, D., Oster, G.: The physics of molecular motors. Acc. Chem. Res.
**34**(6), 412–420 (2001) Google Scholar - 27.Cappello, G., Pierobon, P., Symonds, C., Busoni, L., Gebhardt, J.C., Rief, M., Prost, J.: Myosin V stepping mechanism. Proc. Natl. Acad. Sci. USA
**104**(39), 15328–15333 (2007) Google Scholar - 28.Chang, R., Ayton, G.S., Voth, G.A.: Multiscale coupling of mesoscopic- and atomistic-level lipid bilayer simulations. J. Chem. Phys.
**122**(24), 244716 (2005) Google Scholar - 29.Chen, J.C., Kim, A.S.: Brownian dynamics, molecular dynamics, and Monte Carlo modeling of colloidal systems. Adv. Colloid Interface Sci.
**112**(1–3), 159–173 (2004) Google Scholar - 30.Chu, J.W., Ayton, G.S., Izvekov, S., Voth, G.A.: Emerging methods for multiscale simulation of biomolecular systems. Mol. Phys.
**105**(2–3), 167–175 (2007) Google Scholar - 31.Chun, H.M., Padilla, C.E., Chin, D.N., Watanabe, M., Karlov, V.I., Alper, H.E., Soosaar, K., Blair, K.B., Becker, O.M., Caves, L.S.D., Nagle, R., Haney, D.N., Farmer, B.L.: MBO(N)D: a multibody method for long-time molecular dynamics simulations. J. Comput. Chem.
**21**(3), 159–184 (2000) Google Scholar - 32.Ciudad, A., Sancho, J.M., Tsironis, G.P.: Kinesin as an electrostatic machine. J. Biol. Phys.
**32**(5), 455–463 (2006) Google Scholar - 33.Clemen, A., Vilfan, M., Jaud, J., Zhang, J., Barmann, M., Rief, M.: Force-dependent stepping kinetics of myosin-V. Biophys. J.
**88**, 4402–4410 (2005) Google Scholar - 34.Coe, J.D., Levine, B.G., Martinez, T.J.: Ab initio molecular dynamics of excited-state intramolecular proton transfer using multireference perturbation theory. J. Phys. Chem. A
**111**(44), 11302–11310 (2007) Google Scholar - 35.Cordova, N.J., Ermentrout, B., Oster, G.F.: Dynamics of single-motor molecules: the thermal ratchet model. Proc. Natl. Acad. Sci. USA
**89**(1), 339–343 (1992) Google Scholar - 36.Craig, E.M., Linke, H.: Mechanochemical model for myosin V. Proc. Natl. Acad. Sci. USA
**106**(43), 18261–18266 (2009) Google Scholar - 37.Cressman, A., Togashi, Y., Mikhailov, A.S., Kapral, R.: Mesoscale modeling of molecular machines: cyclic dynamics and hydrodynamical fluctuations. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys.
**77**(5 Pt 1), 050901 (2008) Google Scholar - 38.Currie, I.G.: Foundamental Mechanics of Fluids, 3rd edn. (2007). Accel Developement Google Scholar
- 39.Cytrynbaum, E.N., Rodionov, V., Mogilner, A.: Computational model of dynein-dependent self-organization of microtubule asters. J. Cell Sci.
**117**(Pt 8), 1381–1397 (2004) Google Scholar - 40.Derenyi, I., Vicsek, T.: The kinesin walk: a dynamic model with elastically coupled heads. Proc. Natl. Acad. Sci. USA
**93**, 6775–6779 (1996) Google Scholar - 41.DeVille, R.E.L., Vanden-Eijnden, E.: Regular gaits and optimal velocities for motor proteins. Biophys. J.
**95**(6), 2681–2691 (2008) Google Scholar - 42.Duke, T., Leibler, S.: Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys. J.
**71**(3), 1235–1247 (1996) Google Scholar - 43.Dunn, A.R., Spudich, J.A.: Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol.
**14**(3), 246–248 (2007) Google Scholar - 44.Eisenberg, E., Hill, T.L.: A cross-bridge model of muscle contraction. Prog. Biophys. Mol. Biol.
**33**(1), 55–82 (1978) Google Scholar - 45.Fan, D., Zheng, W., Hou, R., Li, F., Wang, Z.: Modeling motility of the kinesin dimer from molecular properties of individual monomers. Biochemistry
**47**(16), 4733–4742 (2008) Google Scholar - 46.Ferreira, A.M., Bashford, D.: Model for proton transport coupled to protein conformational change: application to proton pumping in the bacteriorhodopsin photocycle. J. Am. Chem. Soc.
**128**(51), 16778–16790 (2006) Google Scholar - 47.Fisher, M.E., Kolomeisky, A.B.: Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci. USA
**98**(14), 7748–7753 (2001) Google Scholar - 48.Fricks, J., Wang, H., Elston, T.C.: A numerical algorithm for investigating the role of the motor-cargo linkage in molecular motor-driven transport. J. Theor. Biol.
**239**(1), 33–48 (2006) MathSciNetGoogle Scholar - 49.Gao, Y.Q., Yang, W., Marcus, R.A., Karplus, M.: A model for the cooperative free energy transduction and kinetics of ATP hydrolysis by F1-atpase. Proc. Natl. Acad. Sci. USA
**100**(20), 11339–11344 (2003) Google Scholar - 50.Gapinski, J., Szymanski, J., Wilk, A., Kohlbecher, J., Patkowski, A., Holyst, R.: Size and shape of micelles studied by means of SANS, PCS, and FCS. Langmuir
**26**(12), 9304–9314 (2010) Google Scholar - 51.Gardner, M.K., Odde, D.J., Bloom, K.: Kinesin-8 molecular motors: putting the brakes on chromosome oscillations. Trends Cell Biol.
**18**(7), 307–310 (2008) Google Scholar - 52.Greenberg, M.J., Moore, J.R.: The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton (Hoboken, N.J.)
**67**(5), 273–285 (2010) Google Scholar - 53.Haghshenas-Jaryani, M., Bowling, A.: Multiscale dynamic modeling of processive motor proteins. In: Proceedings of the IEEE International Conference Robotics and Biomimetics (ROBIO), Phuket Island, Thailand, December, pp. 1403–1408 (2011) Google Scholar
- 54.Haghshenas-Jaryani, M., Bowling, A.: Spatial multibody dynamics of motor proteins. In: Proceedings of Multibody Dynamics 2011, an ECCOMAS Thematic Conference, Brussels, Belgium, July (2011) Google Scholar
- 55.Haghshenas-Jaryani, M., Bowling, A.: Multiscale dynamic modeling of flexibility in myosin V using a planar mechanical model. In: Proceedings of the IEEE International Conference Robotics and Biomimetics (ROBIO), Guangzhou, China, December, pp. 366–371 (2012) Google Scholar
- 56.Haghshenas-Jaryani, M., Bowling, A.: A new numerical strategy for handling quaternions in dynamic modeling and simulation of rigid multibody systems. In: Proceedings of the 2nd Joint International Conference on Multibody System Dynamics (IMSD), Stuttgart, Germany, May–June (2012) Google Scholar
- 57.Haghshenas-Jaryani, M., Bowling, A.: A new switching strategy for addressing Euler parameters in dynamic modeling and simulation of rigid multibody systems. Multibody Syst. Dyn.
**30**(2), 185–197 (2013). doi: 10.1007/s11044-012-9333-8 MathSciNetGoogle Scholar - 58.Hancock, W.O., Howard, J.: Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl. Acad. Sci.
**96**(23), 13147–13152 (1999) Google Scholar - 59.Hayashi, K., Takano, M.: Violation of the fluctuation–dissipation theorem in a protein system. Biophys. J.
**93**(3), 895–901 (2007) Google Scholar - 60.Hendricks, A., Epureanu, B., Meyhfer, E.: Mechanistic mathematical model of kinesin under time and space fluctuating loads. Nonlinear Dyn.
**53**(4), 303–320 (2008) MATHGoogle Scholar - 61.Howard, J.: Motor proteins as nanomachines: the role of thermal fluctuations in generating force and motion. In: 12th Poincaré Seminar, pp. 33–44 (2009) Google Scholar
- 62.Hwang, W., Lang, M.J.: Mechanical design of translocating motor proteins. Cell Biochem. Biophys.
**54**(1–3), 11–22 (2009) Google Scholar - 63.Izvekov, S., Voth, G.A.: A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B
**109**(7), 2469–2473 (2005). doi: 10.1021/jp044629q Google Scholar - 64.Jain, A., Vaidehi, N., Rodriguez, G.: A fast recursive algorithm for molecular dynamics simulation. J. Comput. Phys.
**106**(2), 258–268 (1993) MATHGoogle Scholar - 65.Jamali, Y., Foulaadvand, M.E., Rafii-Tabar, H.: Computational modelling of the collective stochastic motion of kinesin nano motors. J. Theor. Comput. Nano Sci.
**7**, 146–152 (2010) Google Scholar - 66.Jamali, Y., Lohrasebi, A., Rafii-Tabar, H.: Computational modelling of the stochastic dynamics of kinesin biomolecular motors. Phys. A, Stat. Mech. Appl.
**381**, 239–254 (2007) Google Scholar - 67.Julicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys.
**69**(4), 1269–1282 (1997) Google Scholar - 68.Julicher, F., Prost, J.: Spontaneous oscillations of collective molecular motors. Phys. Rev. Lett.
**78**(23), 4510–4513 (1997) Google Scholar - 69.Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol.
**9**(9), 646–652 (2002) Google Scholar - 70.Kim, D.N., Nguyen, C.T., Bathe, M.: Conformational dynamics of supramolecular protein assemblies. J. Struct. Biol.
**173**(2), 261–270 (2011) Google Scholar - 71.Kim, T., Kao, M.T., Hasselbrink, E.F., Meyhofer, E.: Nanomechanical model of microtubule translocation in the presence of electric fields. Biophys. J.
**94**(10), 3880–3892 (2008) Google Scholar - 72.Kolomeisky, A.B., Fisher, M.E.: A simple kinetic model describes the processivity of myosin-V. Biophys. J.
**84**, 1642–1650 (2003) Google Scholar - 73.Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorist’s perspective. Annu. Rev. Phys. Chem.
**58**, 675–695 (2007) Google Scholar - 74.Korn, C.B., Klumpp, S., Lipowsky, R., Schwarz, U.S.: Stochastic simulations of cargo transport by processive molecular motors. J. Chem. Phys.
**131**(24), 245107 (2009) Google Scholar - 75.Kuznetsov, A.V., Avramenko, A.A., Blinov, D.G.: Numerical modeling of molecular-motor-assisted transport of adenoviral vectors in a spherical cell. Comput. Methods Biomech. Biomed. Eng.
**11**(3), 215–222 (2008) Google Scholar - 76.Lan, G., Sun, S.X.: Dynamics of myosin-V processivity. Biophys. J.
**88**(2), 999–1008 (2005) Google Scholar - 77.Lan, G., Sun, S.X.: Flexible light-chain and helical structure of F-actin explain the movement and step size of myosin-VI. Biophys. J.
**91**, 4002–4013 (2006) Google Scholar - 78.Lei, U., Yang, C.Y., Wu, K.C.: Viscous torque on a sphere under arbitrary rotation. Appl. Phys. Lett.
**89**(18), 181908 (2006). http://link.aip.org/link/?APL/89/181908/1. doi: 10.1063/1.2372704 Google Scholar - 79.Leibler, S., Huse, D.A.: Porters versus rowers: a unified stochastic model of motor proteins. J. Cell Biol.
**121**(6), 1357–1368 (1993) Google Scholar - 80.Levin, Y.: Dynamics of myosin-V processivity. Rep. Prog. Phys.
**65**(11), 1577–1632 (2002) Google Scholar - 81.Lin, C.T., Meyhofer, E., Kurabayashi, K.: Predicting the stochastic guiding of kinesin-driven microtubules in microfabricated tracks: a statistical-mechanics-based modeling approach. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys.
**81**(1 Pt 1), 011919 (2010) Google Scholar - 82.Lipowsky, R., Liepelt, S.: Chemomechanical coupling of molecular motors: thermodynamics, network representations, and balance conditions. J. Stat. Phys.
**130**(1), 39–67 (2008) MATHMathSciNetGoogle Scholar - 83.Liu, J., Taylor, D.W., Krementsova, E.B., Trybus, K.M., Taylor, K.A.: Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature
**442**(13), 208–211 (2006) Google Scholar - 84.Lohrasebi, A., Jamali, Y., Rafii-Tabar, H.: Modeling the effect of external electric field and current on the stochastic dynamics of atpase nano-biomolecular motors. Phys. A, Stat. Mech. Appl.
**387**, 5466–5476 (2007) Google Scholar - 85.Masuda, T.: A simulation model of the conventional kinesin based on the driven-by-detachment mechanism. Biosystems
**97**(2), 121–126 (2009) MathSciNetGoogle Scholar - 86.Mateos, J.L.: Walking on ratchets with two Brownian motors. Fluct. Noise Lett.
**4**(1), L161–L170 (2004) Google Scholar - 87.Mather, W.H., Fox, R.F.: Kinesin’s biased stepping mechanism: amplification of neck linker zippering. Biophys. J.
**91**(7), 2416–2426 (2006) Google Scholar - 88.Miller, R., Tadmor, E.: The quasicontinuum method: overview, applications and current directions. J. Comput.-Aided Mater. Des.
**9**, 203–239 (2002). http://dx.doi.org/10.1023/A:1026098010127 Google Scholar - 89.Mukherjee, R.M., Crozier, P.S., Plimpton, S.J., Anderson, K.S.: Substructured molecular dynamics using multibody dynamics algorithms. Int. J. Non-Linear Mech.
**43**(10), 1040–1055 (2008) MATHGoogle Scholar - 90.Mullner, F.E., Syed, S., Selvin, P.R., Sigworth, F.J.: Improved hidden Markov models for molecular motors, part 1: Basic theory. Biophys. J.
**99**(11), 3684–3695 (2010) Google Scholar - 91.Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973) MATHGoogle Scholar
- 92.Neto, N., Bellucci, L.: A new algorithm for rigid body molecular dynamics. Chem. Phys.
**328**(1–3), 259–268 (2006) Google Scholar - 93.Parker, D., Bryant, Z., Delp, S.L.: Coarse-grained structural modeling of molecular motors using multibody dynamics. Cell. Mol. Bioeng.
**2**(3), 366–374 (2009) Google Scholar - 94.Pavliotis, G.A., Stuart, A.M.: Periodic homogenization for inertial particles. Phys. D, Nonlinear Phenom.
**2004**(3–4), 161–187 (2005) MathSciNetGoogle Scholar - 95.Peskin, C.S., Odell, G.M., Oster, G.F.: Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J.
**65**(1), 316–324 (1993) Google Scholar - 96.Peskin, C.S., Oster, G.: Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J.
**68**(4 Suppl), 202S–210S (1995). Discussion, 210S–211S Google Scholar - 97.Ping, X., Shuo-Xing, D., Peng-Ye, W.: A model for processivity of molecular motors. Chin. Phys.
**13**(9), 1569–2863 (2004) Google Scholar - 98.Poursina, M., Anderson, K.S.: Canonical ensemble simulation of biopolymers using a coarse-grained articulated generalized divide-and-conquer scheme. Comput. Phys. Commun.
**184**(3), 652–660 (2013) MATHMathSciNetGoogle Scholar - 99.Poursina, M., Anderson, K.S.: Efficient coarse-grained molecular simulations in the multibody dynamics scheme. Multibody Dyn.
**28**, 147–172 (2013) MathSciNetGoogle Scholar - 100.Poursina, M., Bhalerao, K.D., Flores, S.C., Anderson, K.S., Laederach, A.: Strategies for articulated multibody-based adaptive coarse grain simulation of rna. Methods Enzymol.
**487**, 73–98 (2011) Google Scholar - 101.Praprotnik, M., Site, L.D., Kremer, K.: Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J. Chem. Phys.
**123**(22) (2005) Google Scholar - 102.Pratt, C., Cornely, K.: Essential Biochemistry. Wiley, New York (2004) Google Scholar
- 103.Purcell, T.J., Sweeney, H.L., Spudich, J.A.: A force-dependent state controls the coordination of processive myosin V. Proc. Natl. Acad. Sci.
**102**(39), 13873–13878 (2005) Google Scholar - 104.Rafii-Tabar, H., Jamali, Y., Lohrasebi, A.: Computational modelling of the stochastic dynamics of kinesin biomolecular motors. Physica A
**381**, 239–254 (2007) Google Scholar - 105.Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw Hill, New York (1965) Google Scholar
- 106.Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep.
**361**(2–4), 57–265 (2002) MATHMathSciNetGoogle Scholar - 107.Rice, S.E., Purcell, T.J., Spudich, J.A.: Building and using optical traps to study properties of molecular motors. Methods Enzymol.
**361**, 112–133 (2003) Google Scholar - 108.Rief, M., Rock, R.S., Mehta, A.D., Mooseker, M.S., Cheney, R.E., Spudich, J.A.: Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci.
**97**(17), 9482–9486 (2000) Google Scholar - 109.Rossi, R., Isorce, M., Morin, S., Flocard, J., Arumugam, K., Crouzy, S., Vivaudou, M., Redon, S.: Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design. Bioinformatics
**23**(13), i408–417 (2007) Google Scholar - 110.Rudd, R.E., Broughton, J.Q.: Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys. Rev. B
**58**(10), R5893–R5896 (1998). doi: 10.1103/PhysRevB.58.R5893 Google Scholar - 111.Schief, W.R., Howard, J.: Conformational changes during kinesin motility. Curr. Opin. Cell Biol.
**13**(1), 19–28 (2001) Google Scholar - 112.Schuyler, A.D., Chirikjian, G.S.: Normal mode analysis of proteins: a comparison of rigid cluster modes with c
_{α}coarse graining. J. Mol. Graph. Model.**22**(3), 183–193 (2004) Google Scholar - 113.Schuyler, A.D., Chirikjian, G.S.: Efficient determination of low-frequency normal modes of large protein structures by cluster-nma. J. Mol. Graph. Model.
**24**(1), 46–58 (2005) Google Scholar - 114.Schwieters, C.D., Clore, G.M.: A physical picture of atomic motions within the Dickerson DNA dodecamer in solution derived from joint ensemble refinement against NMR and large-angle X-ray scattering data. Biochemistry
**46**(5), 1152–1166 (2007) Google Scholar - 115.Shao, Q., Gao, Y.Q.: On the hand-over-hand mechanism of kinesin. Proc. Natl. Acad. Sci. USA
**103**(21), 8072–8077 (2006) Google Scholar - 116.Shiroguchi, K., Kinosita, K.: Myosin V walks by lever action and Brownian motion. Science
**316**(5828), 1208–1212 (2007) Google Scholar - 117.Simon, S.M., Peskin, C.S., Oster, G.F.: What drives the translocation of proteins? Proc. Natl. Acad. Sci.
**89**(9), 3770–3774 (1992) Google Scholar - 118.Singh, M.P., Mallik, R., Gross, S.P., Yu, C.C.: Monte Carlo modeling of single-molecule cytoplasmic dynein. Proc. Natl. Acad. Sci. USA
**102**(34), 12059–12064 (2005) Google Scholar - 119.Skau, K.I., Hoyle, R.B., Turner, M.S.: A kinetic model describing the processivity of myosin-V. Biophys. J.
**91**, 2475–2489 (2006) Google Scholar - 120.Sosa, H., Peterman, E.J.G., Moerner, W.E., Goldstein, L.S.B.: ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat. Struct. Biol.
**8**(6), 540–544 (2001) Google Scholar - 121.Stratopoulos, G.N., Dialynas, T.E., Tsironis, G.P.: Directional Newtonian motion and reversals of molecular motors. Phys. Lett. A
**252**(3–4), 151–156 (1999) Google Scholar - 122.Szymanski, J., Patkowski, A., Wilk, A., Garstecki, P., Holyst, R.: Diffusion and viscosity in a crowded environment: from nano- to macroscale. Phys. Chem. Lett. B
**110**, 25593–25597 (2006) Google Scholar - 123.Tsygankov, D., Fisher, M.E.: Kinetic models for mechanoenzymes: structural aspects under large loads. J. Chem. Phys.
**128**(1), 015102 (2008) Google Scholar - 124.Vaidehi, N., Jain, A., Goddard, W.A.: Constant temperature constrained molecular dynamics: the Newton–Euler inverse mass operator method. J. Phys. Chem.
**100**(25), 10508–10517 (1996). doi: 10.1021/jp953043o Google Scholar - 125.Vale, R.D.: Myosin V motor proteins: marching stepwise towards a mechanism. J. Cell Biol.
**163**(3), 445–450 (2003) Google Scholar - 126.Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R., Molloy, J.E.: The gated gait of the processive molecular motor, myosin V. Nat. Cell Biol.
**4**(1), 59–65 (2002) Google Scholar - 127.Vilfan, A.: Elastic lever-arm model for myosin V. Biophys. J.
**88**, 3792–3805 (2005) Google Scholar - 128.Vilfan, A.: Five models for myosin V. Front. Biosci.
**14**, 2269–2284 (2009) Google Scholar - 129.Wagner, G.J., Liu, W.K.: Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys.
**190**(1), 249–274 (2003) MATHGoogle Scholar - 130.Walcott, S., Warshaw, D.M.: Modeling smooth muscle myosin’s two heads: long-lived enzymatic roles and phosphorylation-dependent equilibria. Biophys. J.
**99**(4), 1129–1138 (2010) Google Scholar - 131.Wang, H.: Mathematical theory of molecular motors and a new approach for uncovering motor mechanism. IEE Proc. Nanobiotechnol.
**150**(3), 127–133 (2003) Google Scholar - 132.Wang, H., Elston, T.C.: Mathematical and computational methods for studying energy transduction in protein motors. J. Stat. Phys.
**128**(1–2), 35–76 (2007) MATHMathSciNetGoogle Scholar - 133.Warshaw, D.M., Kennedy, G.G., Work, S.S., Krementsova, E.B., Beck, S.: Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J.
**88**(5), L30–L32 (2005) Google Scholar - 134.Wereley, S.T., Meinhart, C.D.: Recent advances in micro-particle image velocimetry. Annu. Rev. Fluid Mech.
**42**, 557–576 (2010) Google Scholar - 135.Wu, Y., Gao, Y.Q., Karplus, M.: A kinetic model of coordinated myosin V. Biochemistry
**46**, 6318–6330 (2007) Google Scholar - 136.Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng.
**193**(17–20), 1645–1669 (2004) MATHMathSciNetGoogle Scholar - 137.Xie, P.: Stepping behavior of two-headed kinesin motors. Biochim. Biophys. Acta (BBA), Bioenerg.
**1777**(9), 1195–1202 (2008) Google Scholar - 138.Xing, J., Wang, H., Oster, G.: From continuum Fokker–Planck models to discrete kinetic models. Biophys. J.
**89**(3), 1551–1563 (2005) Google Scholar - 139.Yamada, M.D., Maruta, S., Yasuda, S., Kondo, K., Maeda, H., Arata, T.: Conformational dynamics of loops l11 and l12 of kinesin as revealed by spin-labeling EPR. Biochem. Biophys. Res. Commun.
**364**(3), 620–626 (2007) Google Scholar - 140.Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Kinesin walks hand-over-hand. Langmuir
**20**(12), 4892–4897 (2004) Google Scholar - 141.Yu, H., Ma, L., Yang, Y., Cui, Q.: Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations. PLoS Comput. Biol.
**3**(2), e21 (2007) Google Scholar - 142.Yu, H., Ma, L., Yang, Y., Cui, Q.: Mechanochemical coupling in the myosin motor domain. II. Analysis of critical residues. PLoS Comput. Biol.
**3**(2), e23 (2007) Google Scholar - 143.Yu, J., Ha, T., Schulten, K.: Structure-based model of the stepping motor of PcrA helicase. Biophys. J.
**91**(6), 2097–2114 (2006) Google Scholar - 144.Zeldovich, K.B., Joanny, J.F., Prost, J.: Motor proteins transporting cargos. Eur. Phys. J. E
**17**(2), 155–163 (2005) Google Scholar - 145.Zhang, J., Li, W., Wang, J., Qin, M., Wu, L., Yan, Z., Xu, W., Zuo, G., Wang, W.: Protein folding simulations: from coarse-grained model to all-atom model. IUBMB Life
**61**(6), 627–643 (2009) Google Scholar - 146.Zheng, W.: Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex. Proteins
**78**(3), 638–660 (2010) Google Scholar - 147.Zheng, W., Doniach, S.: A comparative study of motor-protein motions by using a simple elastic-network model. Proc. Natl. Acad. Sci.
**100**(23), 13253–13258 (2003) Google Scholar