Skip to main content
Log in

Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Panels of reentry vehicles are subjected to a wide range of flow conditions during ascent and reentry phases. The flow can vary from subsonic continuum flow to hypersonic rarefied flow with wide ranging dynamic pressure and associated aerodynamic heating. One of the main design considerations is the assurance of safety against panel flutter under the flow conditions characterized by sever thermal environment. This paper deals with supersonic/hypersonic flutter analysis of panels exposed to a temperature field. A 3-D rectangular plate element of variable thickness based on absolute nodal coordinate formulation (ANCF) has been developed for the structural model and subjected to an assumed thermal profile that can result from any residual heat seeping into the metallic panels through the thermal protection systems. A continuum mechanics approach for the definition of the elastic forces within the finite element is considered. Both shear strain and transverse normal strain are taken into account. The aerodynamic force is evaluated by considering the first-order piston theory to linearize the potential flow and is coupled with the structural model to account for pressure loading. A provision is made to take into account the effect of arbitrary flow directions with respect to the panel edges. Aerothermoelastic equations using ANCF are derived and solved numerically. Values of critical dynamic pressure are obtained by a modal approach, in which the mode shapes are obtained by ANCF. A detailed parametric study is carried out to observe the effects of different temperature loadings, flow angle directions, and aspect ratios on the flutter boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mukherjee, S., Manjuprasad, M., Avinash, R., Sakravarthini, S.D.: Finite element studies on supersonic panel flutter under high thermal environment with arbitrary flow direction. Technical Memorandum, TM-ST-07 01. National Aerospace Laboratories (NAL), Bangalore, India

  2. Ibrahim, H.H., Yoo, H.H.: Nonlinear flutter oscillations of composite shallow shells subject to aerodynamic and thermal loads. In: 13th International Conference on Aerospace Science and Aviation Technology, Military Technical College, Kobry Elkobbah, Cairo, Egypt. ASAT-13-ST-13

  3. Abbas, L.K., Rui, X., Marzocca, P., Abdalla, M., De Breuker, R.: A parametric study on supersonic/hypersonic flutter behavior of aero-thermo-elastic geometrically imperfect curved skin panel. Acta Mech. 222, 41–57 (2011). doi:10.1007/s00707-011-0525-8

    Article  MATH  Google Scholar 

  4. Mei, C., Abdel-Motagaly, K., Chen, R.: Review of nonlinear panel flutter at supersonic and hypersonic speeds. Appl. Mech. Rev. 52, 321–332 (1999)

    Article  Google Scholar 

  5. Librescu, L., Marzocca, P., Silva, W.A.: Supersonic/hypersonic flutter and postflutter of geometrically imperfect circular cylindrical panels. J. Spacecr. Rockets 39(5), 802–812 (2002)

    Article  Google Scholar 

  6. Abbas, L.K., Rui, X., Hammoudi, Z.S.: Plate/shell element of variable thickness based on the absolute nodal coordinate formulation. J. Multi-Body Dyn. 224, 127–141 (2010)

    Google Scholar 

  7. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sereshk, M.V., Salimi, M.: Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis. Int. J. Numer. Methods Biomed. Eng. 27, 1185–1198 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Schwab, A.L., Gerstmayr, J., Meijaard, J.P.: Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: finite element formulation and absolute nodal coordinate formulation. In: Proceedings of the ASME 2007 Int. Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2007, Las Vegas, USA (2007). DETC2007-DETC34754

    Google Scholar 

  10. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformations of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. ASME J. Mech. Des. 122, 498–507 (2000)

    Article  Google Scholar 

  12. Abbas, L.K., Rui, X., Marzocca, P.: Panel flutter analysis of plate element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 27, 135–152 (2011)

    Article  MathSciNet  Google Scholar 

  13. Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation: plate problem. Int. J. Numer. Methods Biomed. Eng. 40, 2775–2790 (2007)

    Article  MathSciNet  Google Scholar 

  14. Liu, J.Y., Ma, Y.Z., Hong, J.Z.: Geometrical nonlinear formulation for a rectangular plate with large deformation. J. Shanghai Jiaotong University (Sci.) 12(6), 831–837 (2007)

    MATH  Google Scholar 

  15. Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1, 103–108 (2006)

    Article  Google Scholar 

  16. Matikainen, M.K., Schwab, A.L., Mikkola, A.M.: Comparison of two moderately thick plate elements based on the absolute nodal coordinate formulation. In: Multibody Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland (2009)

    Google Scholar 

  17. Mikkola, A.M., Shabana, A.A.: A new plate element based on the absolute nodal coordinate formulation. In: Proceedings of ASME 2001 DETC, Pittsburgh (2001)

    Google Scholar 

  18. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)

    Article  MATH  Google Scholar 

  19. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc. Part K, J. Multi-Body Dyn. 219(4), 345–355 (2005)

    Google Scholar 

  20. Dmitrochenko, O.N., Mikkola, A.M.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 3(4), 1–8 (2008)

    Article  Google Scholar 

  21. Yoo, W.S., Lee, J.H., Sohn, J.H., Park, S.J., Pogorelov, D., Dmitrotchenko, O.N.: Large deflection analysis of a thin plate: computer simulation and experiments. Multibody Syst. Dyn. 11(2), 185–208 (2004)

    Article  MATH  Google Scholar 

  22. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8, 021004 (2013). doi:10.1115/1.4006787

    Article  Google Scholar 

  23. Garcia-Vallejo, D., Mayo, J., Escalona, J.L., Dominguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004)

    Article  MATH  Google Scholar 

  24. Sikand, H.S., Libove, C.: Supersonic flutter of a thermally stressed flat plate with edge stiffeners. NASA CR-1574 (1970)

  25. Liaw, D.G.: Nonlinear supersonic flutter of laminated composite plates under thermal loads. Comput. Struct. 65(5), 733–740 (1997)

    Article  MATH  Google Scholar 

  26. Jones, R.M.: Buckling of Bars, Plates and Shells. Bull Ridge, Blacksburg (2006)

    Google Scholar 

  27. Ashley, H., Zartarian, G.: Piston theory—new aerodynamic tool for aeroelastician. J. Aeronaut. Sci. 23, 1109–1118 (1965)

    Article  MathSciNet  Google Scholar 

  28. Rossettos, J.N., Tong, P.: Finite element analysis of vibration and flutter of cantilever anisotropic plates. J. Appl. Mech. Trans. Am. Soc. Mech. Eng. 41(4), 1075–1080 (1974)

    Article  MATH  Google Scholar 

  29. Noor, A.K., Peters, J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)

    Article  Google Scholar 

  30. Bauchau, O., Bottasso, C.: Space-time perturbation modes for non-linear dynamic analysis of beams. Nonlinear Dyn. 6, 21–35 (1994)

    Google Scholar 

  31. Xue, D.Y., Mei, C.: Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow. AIAA J. 31(1), 154–162 (1993)

    Article  MATH  Google Scholar 

  32. Cheng, G., Lee, Y.Y., Mei, C.: Flow angle, temperature, and aerodynamic damping on supersonic panel flutter stability boundary. J. Aircr. 40(2), 248–255 (2003). also AIAA Paper 2002–1285, April 2002

    Article  Google Scholar 

  33. Ko, W.L.: Analysis of hypersonic aircraft hat-stiffened panels with varying face sheet geometry and fiber orientation. NASA Technical Memorandum 4770 (1996)

  34. Librescu, L., Souza, M.A.: Postbuckling of geometrically imperfect shear-deformable flat panels under combined thermal and compressive edge loadings. J. Appl. Mech. 60, 526–533 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laith K. Abbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, L.K., Rui, X. & Marzocca, P. Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation. Multibody Syst Dyn 33, 163–178 (2015). https://doi.org/10.1007/s11044-014-9410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9410-2

Keywords

Navigation