Skip to main content
Log in

Global identification of joint drive gains and dynamic parameters of parallel robots

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Off-line robot dynamic identification methods are based on the use of the Inverse Dynamic Identification Model (IDIM), which calculates the joint forces/torques (estimated as the product of the known control signal—the input reference of the motor current loop—with the joint drive gains) that are linear in relation to the dynamic parameters, and on the use of linear least squares technique to calculate the parameters (IDIM-LS technique). Most of the papers dealing with the dynamic parameters identification of parallel robots are based on simple models, which take only the dynamics of the moving platform into account. However, for advanced applications such as output force control, in which the robot interaction force with the environment are estimated from the values of the input reference, both identifications of the full robot model and joint drive gains are required to obtain the best results. In this paper a systematic way to derive the full dynamic identification model of parallel robots is proposed in combination with a method that allows the identification of both robot inertial parameters and drive gains. The method is based on the total least squares solution of an over-determined linear system obtained with the inverse dynamic model. This model is calculated with available input reference of the motor current loop and joint position sampled data while the robot is tracking some reference trajectories without load on the robot and some trajectories with a known payload fixed on the robot. The method is experimentally validated on a prototype of parallel robot, the Orthoglide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The number of standard parameters of a free rigid body can be reduced to 10 inertial parameters as it is not necessary to consider the parameters ia j , fv j , fs j and \(\tau_{\mathrm{off}_{j}}\) that are related to actuated joint drive chains.

References

  1. Merlet, J.P.: Parallel Robots, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Amiral, Y., Francois, G.F., Pontnauand, J., Dafaoui, M.: Design and control of a new six-dof parallel robot: application to equestrian gait simulation. Mechatronics 6, 227–239 (1996)

    Article  Google Scholar 

  3. Vivas, A., Poignet, P.: Predictive functional control of a parallel robot. Control Eng. Pract. 13, 863–874 (2005)

    Article  Google Scholar 

  4. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Hermes Penton, London (2002)

    Google Scholar 

  5. Khalil, W., Gautier, M., Lemoine, P.: Identification of the payload inertial parameters of industrial manipulators. In: Proceedings IEEE ICRA, Roma, Italy, April 2007, pp. 4943–4948 (2007)

    Google Scholar 

  6. Restrepo, P.P., Gautier, M.: Calibration of drive chain of robot joints. In: Proceedings of the 4th IEEE Conference on Control Applications, pp. 526–531 (1995)

    Chapter  Google Scholar 

  7. Corke, P.: In situ measurement of robot motor electrical constants. Robotica 23(14), 433–436 (1996)

    Article  Google Scholar 

  8. Gautier, M., Briot, S.: New method for global identification of the joint drive gains of robots using a known inertial payload. In: Proceedings IEEE ECC CDC, Orlando, Florida, USA, December 2011, pp. 526–531 (2011)

    Google Scholar 

  9. Gautier, M., Briot, S.: New method for global identification of the joint drive gains of robots using a known payload mass. In: Proceedings IEEE IROS, San Francisco, CA, USA, September 2011

    Google Scholar 

  10. Vivas, A., Poignet, P., Marquet, F., Pierrot, F., Gautier, M.: Experimental dynamic identification of a fully parallel robot. In: Proceedings of the 2003 IEEE International Conference on Robotics & Automation (ICRA 2003), Taipei, Taiwan (2003)

    Google Scholar 

  11. Guégan, S., Khalil, W., Lemoine, P.: Identification of the dynamic parameters of the orthoglide. In: Proceedings IEEE ICRA, Taipei, Taiwan, September, pp. 3272–3277 (2003)

    Google Scholar 

  12. Renaud, P., Vivas, A., Andreff, N., Poignet, P., Martinet, P., Pierrot, F., Company, O.: Kinematic and dynamic identification of parallel mechanisms. Control Eng. Pract. 14, 1099–1109 (2006)

    Article  Google Scholar 

  13. Grotjahn, M., Heiman, B., Abdellatif, H.: Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control. Multibody Syst. Dyn. 11, 273–294 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Diaz-Rodriguez, M., Mata, V., Valera, A., Page, A.: A methodology for dynamic parameters identification of 3-dof parallel robots in terms of relevant parameters. Mech. Mach. Theory 45, 1337–1356 (2010)

    Article  MATH  Google Scholar 

  15. Chablat, D., Wenger, P.: Architecture optimization of a 3-dof parallel mechanism for machining applications, the Orthoglide. IEEE Trans. Robot. Autom. 19(3), 403–410 (2003)

    Article  Google Scholar 

  16. Briot, S., Gautier, M.: Global identification of drive gains and dynamic parameters of parallel robots – Part 1: Theory. In: Proceedings of the 19th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control (RoManSy) (2012)

    Google Scholar 

  17. Briot, S., Gautier, M.: Global identification of drive gains and dynamic parameters of parallel robots – Part 2: Case study. In: Proceedings of the 19th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control (RoManSy) (2012)

    Google Scholar 

  18. Ibrahim, O., Khalil, W.: Inverse and direct dynamic models of hybrid robots. Mech. Mach. Theory 45, 627–640 (2010)

    Article  MATH  Google Scholar 

  19. Pfurner, M., Husty, M.L.: Implementation of a new and efficient algorithm for the inverse kinematics of serial 6R chains. In: New Trends in Mechanism Science, pp. 91–98, Springer, Berlin (2010)

    Chapter  Google Scholar 

  20. Briot, S., Arakelian, V.: Optimal force generation of parallel manipulators for passing through the singular positions. Int. J. Robot. Res. 27(8), 967–983 (2008)

    Article  Google Scholar 

  21. Nenchev, D.N., Bhattacharya, S., Uchiyama, M.: Dynamic analysis of parallel manipulators under the singularity-consistent parameterization. Robotica 15(4), 375–384 (1997)

    Article  Google Scholar 

  22. Gautier, M.: Dynamic identification of robots with power model. In: Proceedings IEEE ICRA, Albuquerque, USA, April, pp. 1922–1927 (1997)

    Google Scholar 

  23. Gautier, M.: Numerical calculation of the base inertial parameters. J. Robot. Syst. 8(4), 485–506 (1991)

    Article  MATH  Google Scholar 

  24. Gautier, M., Khalil, W.: Exciting trajectories for the identification of the inertial parameters of robots. Int. J. Robot. Res. 11(4), 362–375 (1992)

    Article  Google Scholar 

  25. Swevers, J., Ganseman, C., Tukel, D., DeSchutter, J., VanBrussel, H.: Optimal robot excitation and identification. IEEE Trans. Robot. Autom. 13, 730–740 (1997)

    Article  Google Scholar 

  26. Khalil, W., Ibrahim, O.: General solution for the dynamic modeling of parallel robots. J. Intell. Robot. Syst. 49(1), 19–37 (2007)

    Article  Google Scholar 

  27. Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis. Frontiers in Applied Mathematics Series, vol. 9. SIAM, Philadelphia (1991)

    Book  MATH  Google Scholar 

  28. Gautier, M., Vandanjon, P., Presse, C.: Identification of inertial and drive gain parameters of robots. In: Proceedings IEEE CDC, Lake Buena, Vista, FL, USA, pp. 3764–3769 (1994)

    Google Scholar 

  29. Golub, G.H., Van Loan, C.F.: Matrix Computation, 2nd edn. J. Hopkins, Baltimore (2006)

    Google Scholar 

  30. Gautier, M., Briot, S.: Global identification of drive gains parameters of robots using a known payload. In: Proceedings of the 2012 International Conference on Robotics and Automation (ICRA 2012) (2012)

    Google Scholar 

  31. Moon, F.C.: Applied Dynamics. Wiley, New York (2007)

    Google Scholar 

  32. Gautier, M., Briot, S.: Global identification of drive gains parameters of robots using a known payload. In: IEEE International Conference on Robotics and Automation (ICRA 2012), Saint Paul, Minesota, USA, May 14–18, pp. 2812–2817 (2012)

    Chapter  Google Scholar 

  33. Jubien, A., Gautier, M.: Global identification of spring balancer, dynamic parameters and drive gains of heavy industrial robots. In: IEEE/RSJ International Conference on Inteligent Robots and Systems (IROS 2013), Tokyo, Japan, November 3–7, pp. 1355–1360 (2013)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Philippe Lemoine for his great help and support during the experimental validations carried out on the Orthoglide in the scope of this work. This work has been partially funded by the French ANR project ARROW (ANR 2011 BS3 006 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Briot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briot, S., Gautier, M. Global identification of joint drive gains and dynamic parameters of parallel robots. Multibody Syst Dyn 33, 3–26 (2015). https://doi.org/10.1007/s11044-013-9403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9403-6

Keywords

Navigation