Robust control of underactuated wheeled mobile manipulators using GPI disturbance observers

Abstract

This article describes the design of a linear observer–linear controller-based robust output feedback scheme for output reference trajectory tracking tasks in the case of nonlinear, multivariable, nonholonomic underactuated mobile manipulators. The proposed linear feedback scheme is based on the use of a classical linear feedback controller and suitably extended, high-gain, linear Generalized Proportional Integral (GPI) observers, thus aiding the linear feedback controllers to provide an accurate simultaneous estimation of each flat output associated phase variables and of the exogenous and perturbation inputs. This information is used in the proposed feedback controller in (a) approximate, yet close, cancelations, as lumped unstructured time-varying terms, of the influence of the highly coupled nonlinearities, and (b) the devising of proper linear output feedback control laws based on the approximate estimates of the string of phase variables associated with the flat outputs simultaneously provided by the disturbance observers. Simulations reveal the effectiveness of the proposed approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Also known as Taylor Polynomial Model

References

  1. 1.

    Seraji, H.: A unified approach to motion control of mobile manipulators. Int. J. Robot. Res. 17(2), 107–118 (1998)

    Article  Google Scholar 

  2. 2.

    Hootsmans, N.A., Dubowsky, S.: Large motion control of mobile manipulators including vehicle suspension characteristics. In: Proceedings Int. Conference on Robotics and Automation, Sacramento, CA, pp. 2336–2341 (1991)

    Google Scholar 

  3. 3.

    Tang, C.P., Bhatt, R.M., Abou-Samah, M., Krovi, V.N.: Screw-theoretic analysis framework for payload transport by mobile manipulator collectives. IEEE/ASME Trans. Mechatron. 14(3), 349–357 (2006)

    Google Scholar 

  4. 4.

    Chakraborty, N., Ghosal, A.: Kinematics of wheeled mobile robots on uneven terrain. Mech. Mach. Theory 39, 1273–1287 (2004)

    Article  MATH  Google Scholar 

  5. 5.

    Vukobratovic, M., Tuneski, A.: Mathematical model of multiple manipulators: cooperative compliant manipulation on dynamical environments. Mech. Mach. Theory 33(8), 1211–1239 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. 6.

    Dixon, W.E., Dawson, D.M., Zergeroglum, E., Zhang, F.: Robust tracking and regulation control for mobile robots. Int. J. Robust Nonlinear Control 10(4), 199–216 (2000)

    Article  MATH  Google Scholar 

  7. 7.

    Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, pp. 181–191. Birkhäuser, Boston (1983)

    Google Scholar 

  8. 8.

    Lim, D., Seraji, H.: Configuration control of a mobile dexterous robot: real-time implementation and experimentation. Int. J. Robot. Res. 16(5), 601–618 (1997)

    Article  Google Scholar 

  9. 9.

    Bayle, B., Fourquet, J.Y., Renaud, M.: A coordination strategy for mobile manipulation. In: International Conference on Intelligent Autonomous Systems, pp. 981–988 (2000)

    Google Scholar 

  10. 10.

    Bayle, B., Fourquet, J.Y., Lamiraux, F., Renaud, M.: Kinematic control of wheeled mobile manipulators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1572–1577 (2002)

    Google Scholar 

  11. 11.

    De Luca, A., Oriolo, G., Giordano, P.R.: Kinematic control of nonholonomic mobile manipulators in the presence of steering wheels. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 32(1), 126–132 (2002)

    Article  Google Scholar 

  12. 12.

    Liu, S., Goldenberg, A.A.: Robust damping control of mobile manipulators. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 32(1), 126–132 (2002)

    Article  Google Scholar 

  13. 13.

    Zhang, J., Li, Z., Luo, J.: Implicit control of mobile under-actuated manipulators using support vector machine. In: 48h IEEE Conference on Decision and Control, pp. 811–816 (2009)

    Google Scholar 

  14. 14.

    Medhaffar, H., Derbel, N.: A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator. Int. J. Model. Identif. Control 1(1), 23–28 (2006)

    Article  Google Scholar 

  15. 15.

    Lee, C.-Y., Jeong, I.-K., Lee, I.-h., Lee, J.-J.: Motion control of mobile manipulator based on neural networks and error compensation. In: Proceeding of IEEE International Conference on Robotics and Automation, vol. 5, pp. 4627–4632 (2004)

    Google Scholar 

  16. 16.

    Acar, C., Murakami, T.: Underactuated two-wheled mobile manipulator control using nonlinear backstepping approach. In: Proceedings of the IEEE 34th Annual Conference of Industrial Electronics, pp. 1680–1685 (2008)

    Google Scholar 

  17. 17.

    Fliess, M., Lévine, J., Martin, Ph., Rouchon, P.: Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control 61(6), 1327–1361 (1995)

    Article  MATH  Google Scholar 

  18. 18.

    Sira-Ramírez, H., Agrawal, S.: Differentially Flat Systems. Dekker, New York (2004)

    Google Scholar 

  19. 19.

    Lévine, J.: Analysis and Control of Nonlinear Systems: A Flatness-Based Approach. Springer, Berlin (2009)

    Google Scholar 

  20. 20.

    Ortega, R., Spong, M., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)

    Article  MathSciNet  Google Scholar 

  21. 21.

    Tang, C.P., Miller, P.T., Krovi, V.N., Ryu, J.-C., Agrawal, S.K.: Differential flatness-based planning and control of a wheeled mobile manipulator—theory and experiment. IEEE/ASME Trans. Mechatron. 16(4), 768–773 (2011)

    Article  Google Scholar 

  22. 22.

    Ryu, J.-C., Sangwan, V., Agrawal, S.K.: Differentially flat designs of mobile vehicles with under-actuated manipulator arms. In: Proc. ASME International Mechanical Engineering Congress and Exposition (IMECE2007), pp. 1439–1445 (2007)

    Google Scholar 

  23. 23.

    Sangwan, V., Agrawal, S.K.: Differentially flat systems of bipeds ensuring limit cycles. IEEE/ASME Trans. Mechatron. 14(6), 647–657 (2009)

    Article  Google Scholar 

  24. 24.

    Ryu, J.-C., Agrawal, S.K.: Planning and control of under-actuated mobile manipulators using differential flatness. Auton. Robots 29(1), 35–52 (2010)

    Article  Google Scholar 

  25. 25.

    Ryu, J.-C., Sangwan, V., Agrawal, S.K.: Differentially flat designs of under-actuated mobile manipulators. J. Dyn. Syst. Meas. Control 132(2) (2010)

  26. 26.

    M’Closkey, R.T., Murray, R.M.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Autom. Control 42(5), 614–628 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. 27.

    Block, A.M., Reyhanoglu, M., McClamroch, N.H.: Control and stabilization on nonholonomic dynamic systems. IEEE Trans. Autom. Control 37(1), 1746–1757 (1992)

    Article  Google Scholar 

  28. 28.

    Sarkar, N., Yun, X., Kumar, V.: Control of mechanical systems with rolling constraint: application to dynamic control of mobile robots. IEEE Trans. Autom. Control 37(1), 1746–1757 (1992)

    Google Scholar 

  29. 29.

    Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London (2002)

    Google Scholar 

  30. 30.

    Diop, S., Fliess, M.: Nonlinear observability, identifiability and persistent trajectories. In: 36th IEEE Conference on Decision and Control, Brighton, UK (1991)

    Google Scholar 

  31. 31.

    Johnson, C.D.: Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans. Autom. Control AC-16(6) (1971)

  32. 32.

    Kailath, T.: Linear Systems. Information and Systems Science Series. Prentice-Hall, Upper Saddle River (1979)

    Google Scholar 

  33. 33.

    Luviano-Juárez, A., Cortés-Romero, J., Sira-Ramírez, H.: Synchronization of chaotic oscillators by means of GPI observers. Int. J. Bifurc. Chaos Appl. Sci. Eng. 20(5), 1509–1517 (2010)

    Article  MATH  Google Scholar 

  34. 34.

    Morales, R., Feliu, V., González, A., Pintado, P.: Kinematic model of a new staircase climbing wheelchair and its experimental validation. Int. J. Robot. Res. 25(9), 825–841 (2006)

    Article  Google Scholar 

  35. 35.

    Morales, R., Somolinos, J.A., Cerrada, J.A.: Dynamic model of a stair-climbing mobility system and its experimental validation. Multibody Syst. Dyn. 28, 349–367 (2012)

    Article  Google Scholar 

  36. 36.

    Morales, R., Somolinos, J.A., Cerrada, J.A.: Dynamic control of a reconfigurable stair-climbing mobility system. Robotica 31, 295–310 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Spanish Research Grant DPI2011-24113.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Morales.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morales, R., Sira-Ramírez, H. & Somolinos, J.A. Robust control of underactuated wheeled mobile manipulators using GPI disturbance observers. Multibody Syst Dyn 32, 511–533 (2014). https://doi.org/10.1007/s11044-013-9401-8

Download citation

Keywords

  • GPI control
  • Wheeled mobile manipulators
  • Disturbance cancelation
  • Robust output
  • Feedback control