Skip to main content
Log in

A hybrid dynamic motion prediction method for multibody digital human models based on a motion database and motion knowledge

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel method to predict human motion, seeking to combine the advantages of both data-based and knowledge-based motion prediction methods. Our method relies on a database of captured motions for reference and introduces knowledge in the prediction in the form of a motion control law, which is followed while resembling the actually performed reference motion. The prediction is carried out by solving an optimization problem in which the following conditions are imposed to the motion: must fulfill the goals of the task; resemble the reference motion selected from the database; follow a knowledge-based dynamic motion control law; and ensure the dynamic equilibrium of the human model, considering its interactions with the environment. In this work, we apply the proposed method to a database of clutch pedal depression motions, and we present the results for three predictions. The method is validated by comparing the results of the prediction to motions actually performed in similar conditions. The predicted motions closely resemble the motions in the validation database and no significant differences have been noted either in the motion’s kinematics or in the motion’s dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Monnier, G., Renard, F., Chameroy, A., Wang, X., Trasbot, J.: A motion simulation approach integrated into a design engineering process. In: Proc. SAE International Conference and Exposition of Digital Human Modelling for Design and Engineering (2006)

    Google Scholar 

  2. Chaffin, D.B.: Human motion simulation for vehicle and workplace design. Hum. Factors Ergon. Manuf. Serv. Ind. 17, 475–484 (2007)

    Article  Google Scholar 

  3. Monnier, G., Wang, X., Trasbot, J.: A motion simulation tool for automotive interior design. In: Duffy, V.G. (ed.) Handbook of Digital Human Modeling. CRC Press-Taylor & Francis Group, Boca Raton (2008)

    Google Scholar 

  4. Abdel-Malek, K., Arora, J.: Physics-based digital human modeling: predictive dynamics. In: Duffy, V.G. (ed.) Handbook of Digital Human Modeling. CRC Press-Taylor & Francis Group, Boca Raton (2008)

    Google Scholar 

  5. Badler, N.I., Phillips, C.B., Webber, B.L.: Simulating Humans: Computer Graphics, Animation and Control. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  6. Monnier, G., Wang, X., Verriest, J.P., Goujon, S.: Simulation of complex and specific task-orientated movements—application to the automotive seat belt reaching. In: Proc. SAE International Conference and Exposition of Digital Human Modeling for Design and Engineering (2003)

    Google Scholar 

  7. Park, W., Chaffin, D.B., Martin, B.J.: Toward memory-based human motion simulation: development and validation of a motion modification algorithm. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 34, 376–386 (2004)

    Article  Google Scholar 

  8. Park, W., Chaffin, D.B., Martin, B.J., Yoon, J.: Memory-based human motion simulation for computer-aided ergonomic design. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 38, 513–527 (2008)

    Article  Google Scholar 

  9. Wang, X.: Prediction of lower-limb movements of clutch pedal operation from an existing motion database. In: Proceedings of the 5th SAE Digital Human Modelling Conference, pp. 271–284 (2002)

    Google Scholar 

  10. Jung, E.S., Choe, J.: Human reach posture prediction based on psychophysical discomfort. Int. J. Ind. Ergon. 18, 173–179 (1996)

    Article  Google Scholar 

  11. Faraway, J.J.: Regression analysis for a functional response. Technometrics 39(3), 254–261 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, X., Chaffin, D.B.: A three-dimensional dynamic posture prediction model for simulating in-vehicle seated reaching movements: development and validation. Ergonomics 43, 1314–1330 (2000)

    Article  Google Scholar 

  13. Mavrikios, D., Karabatsou, V., Alexopoulos, K., Pappas, M., Gogos, P., Chryssolouris, G.: An approach to human motion analysis and modelling. Int. J. Ind. Ergon. 36, 979–989 (2006)

    Article  Google Scholar 

  14. Kim, J.H., Abdel-Malek, K., Yang, J., Marler, R.T.: Prediction and analysis of human motion dynamics performing various tasks. Int. J. Hum. Factors Model. Simul. 1, 69–94 (2006)

    Article  Google Scholar 

  15. Chung, H., Xiang, Y., Mathai, A., Rahmatalla, S., Kim, J., Marler, T., Beck, S., Yang, J., Arora, J.S., Abdel-Malek, K.: A robust formulation for prediction of human running. In: Proc. 2007 Digital Human Modeling for Design and Engineering Symposium, pp. 16–18 (2007)

    Google Scholar 

  16. Ren, L., Jones, R.K., Howard, D.: Predictive modelling of human walking over a complete gait cycle. J. Biomech. 40, 1567–1574 (2007)

    Article  Google Scholar 

  17. Xiang, Y., Arora, J.S., Rahmatalla, S., Abdel-Malek, K.: Optimization-based dynamic human walking prediction: one step formulation. Int. J. Numer. Methods Eng. 79, 667–695 (2009)

    Article  MATH  Google Scholar 

  18. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based prediction of asymmetric human gait. J. Biomech. 44, 683–693 (2011)

    Article  Google Scholar 

  19. Yang, J., Marler, R.T., Kim, H.J., Arora, J.S., Abdel-Malek, K.: Multi-objective optimization for upper body posture prediction. In: Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2004)

    Google Scholar 

  20. Marler, T., Rahmatalla, S., Shanahan, M., Abdel-Malek, K.: A new discomfort function for optimization-based posture prediction. SAE technical paper 2005-01-2680 (2005)

  21. Xiang, Y., Chung, H., Kim, J.H., Bhatt, R., Rahmatalla, S., Yang, J., Marler, T.R., Arora, J.S., Abdel-Malek, K.: Predictive dynamics: an optimization-based novel approach for human motion simulation. Struct. Multidiscip. Optim. 41, 465–479 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Xiang, Y., Arora, J.S., Rahmatalla, S., Marler, T., Bhatt, R., Abdel-Malek, K.: Human lifting simulation using a multi-objective optimization approach. Multibody Syst. Dyn. 23, 431–451 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Hybrid predictive dynamics: a new approach to simulate human motion. Multibody Syst. Dyn. 28, 199–224 (2012)

    Article  MathSciNet  Google Scholar 

  24. Pasciuto, I., Valero, A., Ausejo, S., Celigüeta, J.T.: A dynamic motion prediction method based on a motion database and motion knowledge. In: Proc. 1st International Conference on Applied Bionic & Biomechanics (2010)

    Google Scholar 

  25. Pasciuto, I., Valero, A., Ausejo, S., Celigüeta, J.T.: Comparación de leyes de control para la predicción dinámica del movimiento humano usando bases de datos. In: Proc. XVIII Congreso Nacional de Ingeniería Mecánica (2010)

    Google Scholar 

  26. Pasciuto, I., Valero, A., Ausejo, S., Celigüeta, J.T.: A hybrid dynamic motion prediction method with collision detection. In: Proc. First International Symposium on Digital Human Modeling (2011)

    Google Scholar 

  27. Pasciuto, I., Ausejo, S., Celigüeta, J.T., Suescun, A., Cazón, A.: A comparison between optimization-based human motion prediction methods: data-based, knowledge-based and hybrid approaches. Struct. Multidiscip. Optim. (2013, in press). doi:10.1007/s00158-013-0960-3

    Google Scholar 

  28. Zhang, X.: Deformation of angle profiles in forward kinematics for nullifying end-point offset while preserving movement properties. J. Biomech. Eng. 124, 490–495 (2002)

    Article  Google Scholar 

  29. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  30. Park, W., Martin, B.J., Choe, S., Chaffin, D.B., Reed, M.P.: Representing and identifying alternative movement techniques for goal-directed manual tasks. J. Biomech. 38, 519–527 (2005)

    Article  Google Scholar 

  31. Monnier, G.: Simulation de mouvements humains complexes et prédiction de l’inconfort associé. PhD Dissertation (2004)

  32. Marler, T.R., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Marler, T.R., Arora, J.S.: Function-transformation methods for multi-objective optimization. Eng. Optim. 37, 551–570 (2005)

    Article  MathSciNet  Google Scholar 

  34. Xiang, Y., Chung, H., Mathai, A., Rahmatalla, S., Kim, J., Marler, T., Beck, S., Yang, J., Arora, J.S., Abdel-Malek, K.: Optimization-based dynamic human walking prediction. SAE technical paper 2007-01-2489

  35. Witkin, A., Kass, M.: Spacetime constraints. In: Proc. SIGGRAPH 88 Conference Proceedings (1988)

    Google Scholar 

  36. Popovic, Z., Witkin, A.: Physically based motion transformation. In: Proc. ACM SIGGRAPH 99, Computer Graphics Proceedings, pp. 11–20 (1999)

    Google Scholar 

  37. Chang, C.C., Brown, D.R., Bloswick, D.S., Hsiang, S.M.: Biomechanical simulation of manual lifting using spacetime optimization. J. Biomech. 34, 527–532 (2001)

    Article  Google Scholar 

  38. Lo, J., Huang, G., Metaxas, D.: Human motion planning based on recursive dynamics and optimal control techniques. Multibody Syst. Dyn. 8, 433–458 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Piegl, L.A., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Book  Google Scholar 

  40. Robert, T., Ausejo, S., Beurier, G., Celigueta, J.T., Sholukha, V., Van Sint Jan, S., Viossat, P., Wirsching, H.J., Wang, X.: An automated procedure for the personalization of digital human models for human motion analysis. In: Proceedings of the First International Virtual Physiological Human Conference—Poster, Brussels, Belgium, 30 September–1 October 2010

    Google Scholar 

  41. Zatsiorsky, V.M.: Kinetics of Human Motion. Human Kinetics Publishers (2002)

  42. Ausejo, S., Suescun, A., Celigüeta, J.T., Wang, X.: Robust human motion reconstruction in the presence of missing markers and the absence of markers for some body segments. In: Proc. SAE 2006 Digital Human Modeling for Design and Engineering Conference (2006)

    Google Scholar 

  43. Ausejo, S., Wang, X.: Motion capture and reconstruction. In: Duffy, V.G. (ed.) Handbook of Digital Human Modeling. CRC Press-Taylor & Francis Group, Boca Raton (2008)

    Google Scholar 

  44. Ausejo, S., Suescun, A., Celigüeta, J.T.: An optimization method for overdetermined kinematic problems formulated with natural coordinates. Multibody Syst. Dyn. 26, 397–410 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  45. Kapandji, I.A.: The Physiology of the Joints, vol. 2. Churchill Livingstone, London (1987)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank IFSTTAR for providing the database of captured motions used in the present study and Human Solutions GmbH for providing the RAMSIS specifications used to define the DHM. This research was partially funded by the European project DHErgo, “Digital Humans for Ergonomic design of products” (FP7/2007-2013), grant agreement \(\mathrm{n}^{\rm{o}}\) 218525. www.dhergo.org and by the Diputación Foral de Gipuzkoa, reference number 2/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Pasciuto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasciuto, I., Ausejo, S., Celigüeta, J.T. et al. A hybrid dynamic motion prediction method for multibody digital human models based on a motion database and motion knowledge. Multibody Syst Dyn 32, 27–53 (2014). https://doi.org/10.1007/s11044-013-9395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9395-2

Keywords

Navigation