Skip to main content
Log in

Estimating joint kinematics of a whole body chain model with closed-loop constraints

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Computer simulation and optimal control requiring actual joint kinematics and based on the definition of a chain model become more used in biomechanics for studying the musculo-skeletal coordination or optimizing the performance. For this purpose, numerical optimization methods using a chain model have been developed and showed promising results to estimate joint kinematics for open-loop movements. The aim of this study was to exhaustively compare the type of method and closed-loop constraint with four criteria: (i) reconstruction quality, (ii) loop closure respect, (iii) regularity of joint kinematics, and (iv) computational time. Five algorithms were tested to estimate the whole body joint kinematics of 10 elite athletes paddling an ergometer: global optimization (GO) without closed-loop constraints, with soft closed-loop constraints and with strict closed-loop constraints, and Kalman filter (KF) without closed-loop constraints and with soft closed-loop constraints. Each athlete was modelled using a personalized 17-segment 42-degree of freedom chain model. Input data were measured by a 10-camera motion capture system sampled at 250 Hz. ANOVAs were performed on the four criteria to identify differences between the five algorithms. Marker residuals were slightly increased by about 2–3 mm using GO under strict constraints and KF with soft constraints. Closed-loop errors were five times reduced when introducing constraints (10 to 2 mm). KF algorithms gave significantly smoother joint kinematics than the three GO algorithms. Computational time was largely increased by introducing closed-loop constraints in GO algorithm (from 21 to 200 ms per frame) while it remained unchanged in KF algorithm (about 60 ms per frame). To conclude, KF with soft constraints represents the best compromise between the four criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hiley, M.J., Yeadon, M.R.: Optimisation of backward giant circle technique on the asymmetric bars. J. Appl. Biomech. 23(4), 300–308 (2007)

    Google Scholar 

  2. Wilson, C., Yeadon, M.R., King, M.A.: Considerations that affect optimised simulation in a running jump for height. J. Biomech. 40(14), 3155–3161 (2007)

    Article  Google Scholar 

  3. Yeadon, M.R., Brewin, M.A.: Optimised performance of the backward longswing on rings. J. Biomech. 36(4), 545–552 (2003)

    Article  Google Scholar 

  4. Arnold, A.S., Anderson, F.C., Pandy, M.G., Delp, S.L.: Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J. Biomech. 38(11), 2181–2189 (2005)

    Article  Google Scholar 

  5. Neptune, R., Hull, M.: Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. J. Biomech. Eng. 120, 334–341 (1998)

    Article  Google Scholar 

  6. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking: part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16(3), 215–232 (2002)

    Article  Google Scholar 

  7. Remy, C.D., Thelen, D.G.: Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait. J. Biomech. Eng. 131, 031005 (2009)

    Article  Google Scholar 

  8. Requejo, P.S., McNitt-Gray, J.L., Flashner, H.: An approach for developing an experimentally based model for simulating flight-phase dynamics. Biol. Cybern. 87(4), 289–300 (2002)

    Article  MATH  Google Scholar 

  9. Mills, C., Pain, M.T.G., Yeadon, M.R.: The influence of simulation model complexity on the estimation of internal loading in gymnastics landings. J. Biomech. 41(3), 620–628 (2008)

    Article  Google Scholar 

  10. Cappozzo, A., Della Croce, U., Leardini, A., Chiari, L.: Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 21(2), 186–196 (2005)

    Google Scholar 

  11. Lu, T.W., O’Connor, J.J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32(2), 129–134 (1999)

    Article  Google Scholar 

  12. Roux, E., Bouilland, S., Godillon-Maquinghen, A.P., Bouttens, D.: Evaluation of the global optimisation method within the upper limb kinematics analysis. J. Biomech. 35(9), 1279–1283 (2002)

    Article  Google Scholar 

  13. Kadaba, M., Ramakrishnan, H., Wootten, M.: Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8(3), 383–392 (1990)

    Article  Google Scholar 

  14. Spoor, C., Veldpaus, F.: Rigid body motion calculated from spatial co-ordinates of markers. J. Biomech. 13(4), 391–393 (1980)

    Article  Google Scholar 

  15. Andersen, M.S., Damsgaard, M., MacWilliams, B., Rasmussen, J.: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems. Comput. Methods Biomech. Biomed. Eng. 13(2), 171–183 (2010)

    Article  Google Scholar 

  16. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1951 (2007)

    Article  Google Scholar 

  17. Ausejo, S., Suescun, A., Celigueta, J.: An optimization method for overdetermined kinematic problems formulated with natural coordinates. Multibody Syst. Dyn. 26(4), 397–410 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Celigueta, J.: Multibody simulation of the human body motion in sports. In: Proceedings of the 14th International Symposium on Biomechanics in Sports, Funchal, Portugal (1996)

    Google Scholar 

  19. Silva, M.P.T., Ambrosio, J.A.C.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8(2), 219–239 (2002)

    Article  MATH  Google Scholar 

  20. Begon, M., Wieber, P.-B., Yeadon, M.R.: Kinematics estimation of straddled movements on high bar from a limited number of skin markers using a chain model. J. Biomech. 41(3), 581–586 (2008)

    Article  Google Scholar 

  21. De Groote, F., De Laet, T., Jonkers, I., De Schutter, J.: Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. J. Biomech. 41(16), 3390–3398 (2008)

    Article  Google Scholar 

  22. Lu, T.W., O’Connor, J.J.: A three-dimensional computer graphics-based animated model of the human locomotor system with anatomical joint constraints. J. Biomech. 31(suppl 1), 116 (1998)

    Article  Google Scholar 

  23. Stagni, R., Fantozzi, S., Cappello, A.: Double calibration vs. global optimisation: performance and effectiveness for clinical application. Gait Posture 29(1), 119–122 (2009)

    Article  Google Scholar 

  24. Cappello, A., Stagni, R., Fantozzi, S., Leardini, A.: Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during selected motor tasks. IEEE Trans. Biomed. Eng. 52(6), 992–998 (2005)

    Article  Google Scholar 

  25. Cerveri, P., Pedotti, A., Ferrigno, G.: Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation. J. Biomech. 38(11), 2228–2236 (2005)

    Article  Google Scholar 

  26. Halvorsen, K., Soderstrom, T., Stokes, V., Lanshammar, H.: Using an extended Kalman filter for rigid body pose estimation. J. Biomech. Eng. 127(3), 475–483 (2005)

    Google Scholar 

  27. Klous, M., Klous, S.: Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints. J. Biomech. Eng. 132(7), 074501 (2010)

    Article  Google Scholar 

  28. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  29. Cerveri, P., Pedotti, A., Ferrigno, G.: Robust recovery of human motion from video using Kalman filters and virtual humans. Hum. Mov. Sci. 22(3), 377–404 (2003)

    Article  Google Scholar 

  30. Andersen, M.S., Benoit, D.L., Damsgaard, M., Ramsey, D.K., Rasmussen, J.: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J. Biomech. 43(2), 268–273 (2010)

    Article  Google Scholar 

  31. Duprey, S., Chèze, L., Dumas, R.: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J. Biomech. 43(14), 2858–2862 (2010)

    Article  Google Scholar 

  32. Moissenet, F., Cheze, L., Dumas, R.: Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions. Multibody Syst. Dyn. 28(1–2), 125–141 (2012)

    Article  MathSciNet  Google Scholar 

  33. Ribeiro, A., Rasmussen, J., Flores, P., Silva, L.: Modeling of the condyle elements within a biomechanical knee model. Multibody Syst. Dyn. 28(1–2), 181–197 (2012)

    Article  MathSciNet  Google Scholar 

  34. Mann, R.V., Kearney, J.: A biomechanical analysis of the Olympic-style flatwater kayak stroke. Med. Sci. Sports Exerc. 12(3), 183–188 (1980)

    Article  Google Scholar 

  35. Szanto, C.: Racing Canoeing. International Canoe Federation, Lausanne (2004)

    Google Scholar 

  36. Begon, M., Colloud, F., Sardain, P.: Lower limb contribution in kayak performance: modelling, simulation and analysis. Multibody Syst. Dyn. 23(4), 387–400 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Begon, M., Monnet, T., Lacouture, P.: Effects of movement for estimating the hip joint centre. Gait Posture 25(3), 353–359 (2007)

    Article  Google Scholar 

  38. Ehrig, R.M., Taylor, W.R., Duda, G.N., Heller, M.O.: A survey of formal methods for determining the centre of rotation of ball joints. J. Biomech. 39(15), 2798–2809 (2006)

    Article  Google Scholar 

  39. Colloud, F., Brichet, R., Durand, F., Munoz, F., Lacouture, P.: Improvements in the design of a kayak-ergometer using a sliding footrest-seat complex. Proc. Eng. 2(2), 3465 (2010)

    Article  Google Scholar 

  40. Kapandji, I.: The Physiology of the Joints, vol. 1: Upper Limb, 6th edn. Churchill, Livingston, Oxford (2007)

    Google Scholar 

  41. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion, part 1: ankle, hip, and spine. J. Biomech. 35(4), 543–548 (2002)

    Article  Google Scholar 

  42. Wu, G., van der Helm, F.C.T., Veeger, H.E.J., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion, part 2: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981–992 (2005)

    Article  Google Scholar 

  43. Wieber, P.-B., Billet, F., Boissieux, L., Pissard-Gibollet, R.: The HuMAnS toolbox, a homogenous framework for motion capture, analysis and simulation. In: Proceedings of the 9th International Symposium on the 3D Analysis of Human Movement, Valenciennes, France (2006)

    Google Scholar 

  44. Lawrence, C., Zhou, J.L., Tits, A.L.: User’s guide for CFSQP version 2.5: a C code for solving (large scale) constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality constraints. Report TR-94-16rl, Institute for Systems Research, University of Maryland, College Park, MD (1997)

  45. Fohanno, V., Colloud, F., Begon, M., Lacouture, P.: Estimation of the 3D kinematics in kayak using an extended Kalman filter algorithm: a pilot study. Comput. Methods Biomech. Biomed. Eng. 13(suppl. 1), 55–56 (2010)

    Article  Google Scholar 

  46. Kapandji, I.: The Physiology of the Joints, vol. 2: Lower Limb, 6th edn. Churchill, Livingstone, Oxford (2010)

    Google Scholar 

  47. Begon, M., Fohanno, V., Colloud, F.: Kinematics estimation using a global optimization with closed-loop constraints. In: Proc. of the Annual ASB Congress, Penn State, PA (2009)

    Google Scholar 

  48. Charlton, I.W., Tate, P., Smyth, P., Roren, L.: Repeatability of an optimised lower body model. Gait Posture 20(2), 213–221 (2004)

    Article  Google Scholar 

  49. Reinbolt, J.A., Schutte, J.F., Fregly, B.J., Koh, B.I., Haftka, R.T., George, A.D., Mitchell, K.H.: Determination of patient-specific multi-joint kinematic models through two-level optimization. J. Biomech. 38(3), 621–626 (2005)

    Article  Google Scholar 

  50. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. B 26(2), 211–252 (1964)

    MATH  MathSciNet  Google Scholar 

  51. Harwell, M.R., Rubinstein, E.N., Hayes, W.S., Olds, C.C.: Summarizing Monte Carlo results in methodological research: the one- and two-factor fixed effects ANOVA cases. J. Educ. Stat. 17(4), 315–339 (1992)

    Google Scholar 

  52. Schmider, E., Ziegler, M., Danay, E., Beyer, L., Bühner, M.: Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Eur. J. Res. Methods Behav. Soc. Sci. 6(4), 147–151 (2010)

    Article  Google Scholar 

  53. Pandy, M.G.: Computer modeling and simulation of human movement. Annu. Rev. Biomed. Eng. 3(1), 245–273 (2001)

    Article  Google Scholar 

  54. Halvorsen, K., Johnston, C., Back, W., Stokes, V., Lanshammar, H.: Tracking the motion of hidden segments using kinematic constraints and Kalman filtering. J. Biomech. Eng. 130(1), 377–404 (2008)

    Google Scholar 

  55. Buczek, F.L., Rainbow, M.J., Cooney, K.M., Walker, M.R., Sanders, J.O.: Implications of using hierarchical and six degree-of-freedom models for normal gait analyses. Gait Posture 31(1), 57–63 (2010)

    Article  Google Scholar 

  56. Della Croce, U., Leardini, A., Chiari, L., Cappozzo, A.: Human movement analysis using stereophotogrammetry: part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21(2), 226–237 (2005)

    Article  Google Scholar 

  57. Quental, C., Folgado, J., Ambrosio, J., Monteiro, J.: A multibody biomechanical model of the upper limb including the shoulder girdle. Multibody Syst. Dyn. 28(1–2), 83–108 (2012)

    Article  MathSciNet  Google Scholar 

  58. Ehrig, R.M., Taylor, W.R., Duda, G.N., Heller, M.O.: A survey of formal methods for determining functional joint axes. J. Biomech. 40(10), 2150–2157 (2007)

    Article  Google Scholar 

  59. Bergamini, E., Pillet, H., Hausselle, J., Thoreux, P., Guerard, S., Camomilla, V., Cappozzo, A., Skalli, W.: Tibio-femoral joint constraints for bone pose estimation during movement using multi-body optimization. Gait Posture 33(4), 706–711 (2011)

    Article  Google Scholar 

  60. Anglin, C., Wyss, U.: Review of arm motion analyses. Proc. Inst. Mech. Eng. 214(5), 541–555 (2000)

    Article  Google Scholar 

  61. Leardini, A., Chiari, L., Croce, U.D., Cappozzo, A.: Human movement analysis using stereophotogrammetry. part 3: soft tissue artifact assessment and compensation. Gait Posture 21(2), 212–225 (2005)

    Article  Google Scholar 

  62. Arjmand, N., Shirazi-Adl, A.: Sensitivity of kinematics-based model predictions to optimization criteria in static lifting tasks. Med. Eng. Phys. 28(6), 504–514 (2006)

    Article  Google Scholar 

  63. Begon, M., Colloud, F., Fohanno, V., Bahuaud, P., Monnet, T.: Computation of the 3D kinematics in a global frame over a 40 m-long pathway using a rolling motion analysis system. J. Biomech. 42(16), 2649–2653 (2009)

    Article  Google Scholar 

  64. Huber, P., Cagran, C., Muller, W.: An algorithm to correct for camera vibrations in optical motion tracking systems. J. Biomech. 44(11), 2172–2176 (2011)

    Article  Google Scholar 

  65. Cappozzo, A., Catani, F., Della Croce, U., Leardini, A.: Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin. Biomech. 10(4), 171–178 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. V. Fohanno was supported by a grant from the Ministère de la recherche et de l’enseignement supérieur (France). The financial support of the Ministère des sports, Région Poitou-Charentes and European Union (CPER 2007-2013) are gratefully acknowledged. We would like to thank O. Boukpetit and A. Richard (Fédération française de canoë-kayak), F. Durand (CAIPS, CREPS Poitou-Charentes), Dr. K. Ben Mansour, Dr. A. Decatoire and A. Thouzé (Institut Pprime UPR CNRS 3346, Université de Poitiers), and athletes for their contribution to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Fohanno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fohanno, V., Begon, M., Lacouture, P. et al. Estimating joint kinematics of a whole body chain model with closed-loop constraints. Multibody Syst Dyn 31, 433–449 (2014). https://doi.org/10.1007/s11044-013-9366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9366-7

Keywords

Navigation