Skip to main content
Log in

Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The inverse dynamics analysis of underactuated multibody systems aims at determining the control inputs in order to track a prescribed trajectory. This paper studies the inverse dynamics of non-minimum phase underactuated multibody systems with serial and parallel planar topology, e.g. for end-effector control of flexible manipulators or manipulators with passive joints. Unlike for minimum phase systems, the inverse dynamics of non-minimum phase systems cannot be solved by adding trajectory constraints (servo-constraints) to the equations of motion and applying a forward time integration. Indeed, the inverse dynamics of a non-minimum phase system is known to be non-causal, which means that the control forces and torques should start before the beginning of the trajectory (pre-actuation phase) and continue after the end-point is reached (post-actuation phase). The existing stable inversion method proposed for general nonlinear non-minimum phase systems requires to derive explicitly the equations of the internal dynamics and to solve a boundary value problem. This paper proposes an alternative solution strategy which is based on an optimal control approach using a direct transcription method. The method is illustrated for the inverse dynamics of an underactuated serial manipulator with rigid links and four degrees-of-freedom and an underactuated parallel machine. An important advantage of the proposed approach is that it can be applied directly to the standard equations of motion of multibody systems either in ODE or in DAE form. Therefore, it is easier to implement this method in a general purpose simulation software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Arnold, M., Brüls, O.: Convergence of the generalized-α scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakke, V.L.: A maximum principle for an optimal control problem with integral constraints. J. Optim. Theory Appl. 13(1), 32–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bastos, G.J., Brüls, O.: Trajectory optimization of flexible robots using an optimal control approach. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics (2010)

    Google Scholar 

  4. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, New York (2006)

    Book  Google Scholar 

  5. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  6. Betts, J.T.: Pratical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  7. Blajer, W., Kolodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11, 343–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brüls, O., Eberhard, P.: Sensitivity analysis for dynamic mechanical systems with finite rotations. Int. J. Numer. Methods Eng. 74, 1897–1927 (2008)

    Article  MATH  Google Scholar 

  9. Chengxian, X., Jong, J.L.: Sequential quadratic programming methods for optimal control problems with state constraints. Appl. Math. J. Chin. Univ. Ser. A 8(2), 163–174 (1993)

    Article  MATH  Google Scholar 

  10. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41(7), 930–942 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diehl, M., Bock, H.G., Diedam, H., Wieber, P.-B.: Fast direct multiple shooting algorithms for optimal robot control. In: Fast Motions in Biomechanics and Robotics. Springer, Berlin (2007)

    Google Scholar 

  13. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: a Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  14. Hiller, M., Kecskemethy, A.: Dynamics of multibody systems with minimal coordinates. In: Pereira, M.F.O., ASI Series, N.A.T.O., Ambrosio, J.C. (eds.) Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, Troia, Portugal, June 27–July 9, 1994. Kluwer Academic, Norwell (1994)

    Google Scholar 

  15. Isidori, A.: Nonlinear Control Systems, 3rd edn. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  16. Kwon, D.-S., Book, W.J.: A time-domain inverse dynamics tracking control of a single-link flexible mainpulator. J. Dyn. Syst. Meas. Control 116, 193–200 (1994)

    Article  MATH  Google Scholar 

  17. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67–94 (1959)

    Google Scholar 

  18. Sastry, S.: Nonlinear Systems: Analysis, Stability and Control. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  19. Seifried, R.: Integrated mechanical and control design of underactuated multibody systems. Nonlinear Dyn. 67, 1539–1557 (2012)

    Article  MathSciNet  Google Scholar 

  20. Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. 27(1), 75–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seifried, R., Bastos, G.J., Brüls, O.: Computation of bounded feed-forward control for underactuated multibody systems using nonlinear optimization. In: Proceedings in Applied Mathematics and Mechanics (PAMM), pp. 69–70 (2011)

    Google Scholar 

  22. Seifried, R., Eberhard, P.: Design of feed-forward control for underactuated multibody systems with kinematic redundancy. In: Ulbrich H, G.L. (ed.) Motion and Vibration Control: Selected Papers from MOVIC 2008. Springer, Berlin (2009)

    Google Scholar 

  23. Seifried, R., Held, A., Dietmann, F.: Analysis of feed-forward control design approaches for flexible multibody systems. J. Syst. Des. Dyn. 5(3), 429–440 (2011)

    Google Scholar 

  24. Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  25. Taylor, D., Li, S.: Stable inversion of continuous-time nonlinear systems by finite-difference methods. IEEE Trans. Autom. Control 47(3), 537–542 (2002)

    Article  MathSciNet  Google Scholar 

  26. Wenger, P., Chablat, D.: Kinematic analysis of a class of analytic planar 3-RPR parallel manipulators. In: Computational Kinematics: Proceedings of the 5th International Workshop on Computational Kinematics, pp. 43–50 (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guaraci Bastos Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastos, G., Seifried, R. & Brüls, O. Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach. Multibody Syst Dyn 30, 359–376 (2013). https://doi.org/10.1007/s11044-013-9361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9361-z

Keywords

Navigation