Advertisement

Multibody System Dynamics

, Volume 30, Issue 2, pp 119–138 | Cite as

Comparison between ANCF and B-spline surfaces

  • Aki Mikkola
  • Ahmed A. Shabana
  • Cristina Sanchez-Rebollo
  • Jesus R. Jimenez-Octavio
Article

Abstract

This paper compares the descriptions of surfaces used in computational geometry (CG) methods and the finite element (FE) kinematics. Such a description is necessary for the successful Integration of Computer Aided Design and Analysis (I-CAD-A). B-spline surface geometry is defined using rigid recurrence formulas that employ the concept of the knot multiplicity to define the degree of continuity at the breakpoints. The knot multiplicity concept as well as the rigid recurrence formulas do not offer the flexibility provided by FE formulations. Furthermore, the concept of degrees of freedom is not considered in developing CG methods. Consequently, problems can be encountered in using the recurrence formulas to model certain types of joints. It is, therefore, important to adopt a FE method that is consistent with CG methods in order to be able to establish an efficient interface between CAD systems and analysis tools. The FE formulation used in this investigation for the surface description is the Absolute Nodal Coordinate Formulation (ANCF). It is shown in this paper that B-spline surfaces can be converted to ANCF thin plate finite elements without any geometric distortion. To this end, a linear transformation that defines the relationship between the B-spline surface control points and the ANCF position and gradient vectors is developed. The resulting ANCF thin plate finite elements define a unique displacement and rotation field, and their geometry is invariant under an arbitrary rigid body rotations. The analysis presented in this paper clearly shows that all B-spline surfaces can be converted to ANCF meshes that have the same original CAD geometry. The converse is not true; that is, not all ANCF thin plate finite elements can be converted to B-spline surfaces. This sheds light on the flexibility and computational advantage that can be gained by the use of the FE method in the analysis as compared to the use of CG methods. The paper also shows how a B-spline surface can be converted systematically to a volume representation (full parameterization) using ANCF geometry.

Keywords

Absolute nodal coordinate formulation Isogeometric analysis Thin plate elements CAD I-CAD-A 

Notes

Acknowledgements

This research was supported in part by the US Army Tank-Automotive Research, Development, and Engineering Center (TARDEC) (Contract No. W911NF-07-D-0001), and partially by the Ministry of Economy and Competitiveness and the Ministry of Education, Culture, and Sports of the Spanish Government.

References

  1. 1.
    Abbas, L.K., Rui, X., Hammoudi, Z.S.: Plate/shell element of variable thickness based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 224(K), 127–141 (2010) Google Scholar
  2. 2.
    Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of the Finite Element Analysis, 3rd edn. Wiley, New York (1989) Google Scholar
  3. 3.
    Cottrell, J.A., Hughes, T., Bazilevs, Y.: Isogeometric Analysis—Toward Integration of CAD and FEA. Wiley, New York (2009) CrossRefGoogle Scholar
  4. 4.
    Crisfield, M.A.: A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput. Methods Appl. Mech. Eng. 81, 131–150 (1990) zbMATHCrossRefGoogle Scholar
  5. 5.
    Dmitrochenko, O., Mikkola, A.: A formal procedure and invariants of a transition from conventional finite elements to the absolute nodal coordinate formulation. Multibody Syst. Dyn. 22(4), 323–339 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10, 17–43 (2003) zbMATHCrossRefGoogle Scholar
  7. 7.
    Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219(4), 345–355 (2005) Google Scholar
  8. 8.
    Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280, 719–738 (2005) CrossRefGoogle Scholar
  9. 9.
    Garcia-Vallejo, D., Escalona, J.L., Mayo, J., Dominguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34, 75–94 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Garcia-Vallejo, D., Mayo, J., Escalona, J.L.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20(1), 1–28 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008) CrossRefGoogle Scholar
  12. 12.
    Hamed, A.M., Shabana, A.A., Jayakumar, P., Letherwood, M.D.: Non-structural geometric discontinuities in finite element/multibody system analysis. Nonlinear Dyn. 66, 809–824 (2011) CrossRefGoogle Scholar
  13. 13.
    Hölling, K.: Finite Element Methods with B-Splines. SIAM, Philadelphia (2003) CrossRefGoogle Scholar
  14. 14.
    Huebner, K.H.: The Finite Element Method for Engineers. Wiley, New York (1975) Google Scholar
  15. 15.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kerkkänen, K.S., García-Vallejo, D., Mikkola, A.M.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43, 239–256 (2006) zbMATHCrossRefGoogle Scholar
  17. 17.
    Lan, P., Shabana, A.A.: Integration of b-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61(1–2), 193–206 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Liu, C., Tian, Q., Hu, H.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011) zbMATHCrossRefGoogle Scholar
  19. 19.
    Mackenzie, D.: Curing I11 surfaces. SIAM Soc. Newsl. 44(3), 1 (2011) MathSciNetGoogle Scholar
  20. 20.
    Mikkola, A., Shabana, A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Murlikrishna, R., Prathap, G.: Studies on variational correctness of finite element elastodynamics of some plate elements. Research Report CM 0306, C-MMACS (2003) Google Scholar
  22. 22.
    Omar, M.A., Shabana, A.A.: A two-dimensional shear deformation beam for large rotation and deformation. J. Sound Vib. 243(3), 565–576 (2001) CrossRefGoogle Scholar
  23. 23.
    Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York (1997) CrossRefGoogle Scholar
  24. 24.
    Sanborn, G., Shabana, A.A.: On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 22(2), 181–197 (2009) zbMATHCrossRefGoogle Scholar
  25. 25.
    Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 5(1), 011010 (2010) CrossRefGoogle Scholar
  26. 26.
    Shabana, A.A.: Uniqueness of the geometric representation in large rotation finite element formulations. J. Comput. Nonlinear Dyn. 5, 044501 (2010) CrossRefGoogle Scholar
  27. 27.
    Shabana, A.A.: Computational Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012) zbMATHGoogle Scholar
  28. 28.
    Shabana, A.A., Mikkola, A.: On the use of the degenerated plate and the absolute nodal coordinate formulations in multibody system applications. J. Sound Vib. 259(2), 481–489 (2003) CrossRefGoogle Scholar
  29. 29.
    Shabana, A.A., Hamed, A.M., Mohamed, A.A., Jayakumar, P., Letherwood, M.D.: Use of b-spline in the finite element analysis: comparison with ANCF geometry. J. Comput. Nonlinear Dyn. 7(1), 011008 (2012) CrossRefGoogle Scholar
  30. 30.
    Simo, J.C.: A finite strain beam formulation, the three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motion—the plane case: Part I. J. Appl. Mech. 53, 849–854 (1986) zbMATHCrossRefGoogle Scholar
  32. 32.
    Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.Z.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4, 021009 (2009) CrossRefGoogle Scholar
  33. 33.
    Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010) zbMATHCrossRefGoogle Scholar
  34. 34.
    Yoo, W.S., Lee, J.H., Park, S.J., Sohn, J.H., Pogorelov, D., Dimitrochenko, O.: Large deflection analysis of a thin plate: computer simulation and experiment. Multibody Syst. Dyn. 11, 185–208 (2004) zbMATHCrossRefGoogle Scholar
  35. 35.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Volume 2: Solid Mechanics. Butterworth-Heinemann, Oxford (2000) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Aki Mikkola
    • 1
  • Ahmed A. Shabana
    • 2
  • Cristina Sanchez-Rebollo
    • 3
  • Jesus R. Jimenez-Octavio
    • 4
  1. 1.Department of Mechanical EngineeringLappeenranta University of TechnologyLappeenrantaFinland
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Institute for Research in TechnologyUniversidad Pontificia ComillasMadridSpain
  4. 4.Department of Mechanical EngineeringUniversidad Pontificia ComillasMadridSpain

Personalised recommendations