Skip to main content
Log in

A Lagrange–Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In the scope of this paper, a finite-element formulation for an axially moving beam is presented. The beam element is based on the absolute nodal coordinate formulation, where position and slope vectors are used as degrees of freedom instead of rotational parameters. The equations of motion for an axially moving beam are derived from generalized Lagrange equations in a Lagrange–Eulerian sense. This procedure yields equations which can be implemented as a straightforward augmentation to the standard equations of motion for a Bernoulli–Euler beam. Moreover, a contact model for frictional contact between an axially moving strip and rotating rolls is presented. To show the efficiency of the method, simulations of a belt drive are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. www.hotint.org.

References

  1. Behdinan, K., Stylianou, M.C., Tabarrok, B.: Dynamics of flexible sliding beams—non-linear analysis, part I: formulation. J. Sound Vib. 208(4), 517–539 (1997)

    Article  Google Scholar 

  2. Behdinan, K., Tabarrok, B.: Dynamics of flexible sliding beams—non-linear analysis, part II: transient response. J. Sound Vib. 208(4), 541–565 (1997)

    Article  Google Scholar 

  3. Berzeri, M., Shabana, A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235(4), 539–565 (2002)

    Article  Google Scholar 

  4. Dufva, K., Kerkkänen, K., Maqueda, L., Shabana, A.: Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dyn. 48, 449–466 (2007). doi:10.1007/s11071-006-9098-9

    Article  MATH  Google Scholar 

  5. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)

    Article  Google Scholar 

  6. Humer, A., Irschik, H.: Onset of transient vibrations of axially moving beams with large displacements, finite deformations and an initially unknown length of the reference configuration. Z. Angew. Math. Mech. 4, 267–278 (2009)

    Article  MathSciNet  Google Scholar 

  7. Irschik, H., Holl, H.: The equations of Lagrange written for a non-material volume. Acta Mech. 153, 231–248 (2002)

    Article  MATH  Google Scholar 

  8. Shabana, A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 248–339 (1997)

    MathSciNet  Google Scholar 

  9. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case: parts I and II. J. Appl. Mech. 53, 849–863 (1986)

    Article  MATH  Google Scholar 

  10. Sinwel, A., Gerstmayr, J.: Modeling an axially moving beam using the absolute nodal coordinate formulation. In: Topping, B.H.V., Adam, J.M., Pallarés, F.J., Bru, R., Romero, M.L. (eds.) Proceedings of the Seventh International Conference on Engineering Computational Technology. Civil-Comp Press, Stirlingshire (2010). doi:10.4203/ccp.94.112

    Google Scholar 

  11. Spelsberg-Korspeter, G., Kirillov, O.N., Hagedorn, P.: Modeling and stability analysis of an axially moving beam with frictional contact. J. Appl. Mech. 75(3), 031001 (2008). doi:10.1115/1.2755166

    Article  Google Scholar 

  12. Stangl, M., Gerstmayr, J., Irschik, H.: An alternative approach for the analysis of nonlinear vibrations of pipes conveying fluid. J. Sound Vib. 310, 493–511 (2008)

    Article  Google Scholar 

  13. Vu-Quoc, L., Li, S.: Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric resonance. Comput. Methods Appl. Mech. Eng. 120, 65–118 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wickert, J.A., Mote, C.D.: Classical vibration analysis of axially moving continua. J. Appl. Mech. 57(3), 738–744 (1990)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support of the Austrian Science Fund FWF under project grant I 337-N18. The second author acknowledges support of the Comet-K2 Austrian Center of Competence in Mechatronics ACCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Pechstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pechstein, A., Gerstmayr, J. A Lagrange–Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation. Multibody Syst Dyn 30, 343–358 (2013). https://doi.org/10.1007/s11044-013-9350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9350-2

Keywords

Navigation