Skip to main content

Advertisement

Log in

Optimisation of multiple phase human movements

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

When simulating human movements it is frequently desirable to optimise multiple phase movements where the phases represent, e.g., different contact conditions. The different constraints are usually acting in parts of the movements and their time durations are in most cases unknown. Therefore a multiple phase free-time optimisation method is formulated in this work, with phase times included as variables. Through a temporal finite element approach, a discrete representation is derived and a nonlinear optimisation algorithm solves for the rather high number of variables (∼6000) and constraints (∼15000) in the presented numerical problem. A four degrees of freedom test problem, representing a standing high jump, is solved in order to test some basic aspects. A more realistic problem shows its performance in its intended applications, biomechanical simulations. This is a sagittal eight degrees of freedom model for a human backward somersault, including preparing movement, flight phase and landing. The numerical performance as well as some application specific results are discussed. The method description is general and applicable to other movements in its presented format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Allen, S.J., King, M.A., Yeadon, M.R.: Is a single or double arm technique more advantageous in triple jumping? J. Biomech. 43(16), 3156–3161 (2010)

    Article  Google Scholar 

  2. Andersson, F.C., Pandy, M.G.: A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2, 201–231 (1998)

    Article  Google Scholar 

  3. Ashby, B., Delp, S.: Optimal control simulations reveal mechanisms by which arm movement improves standing long jump performance. J. Biomech. 39(9), 1726–1734 (2006)

    Article  Google Scholar 

  4. Bai, E., Ren, W., Ma, X.: Isokinetic strength of leg flexors and extensor in elite high jumper. In: Hong, Y., Johns, D.P., Sanders, R. (eds.) Proceedings of 18 International Symposium on Biomechanics in Sports, Hong Kong (2000)

    Google Scholar 

  5. Blajer, W., Dziewiecki, K., Mazur, Z.: Multibody modeling of human body for the inverse dynamics analysis of sagittal plane movements. Multibody Syst. Dyn. 18, 217–232 (2007)

    Article  MATH  Google Scholar 

  6. Cheng, K.B., Hubbard, M.: Role of arms in somersaulting from compliant surfaces: a simulation study of springboard standing dives. Hum. Mov. Sci. 27(1), 80–95 (2008)

    Article  Google Scholar 

  7. Cook, R., Malkus, D., Plesha, M., Witt, R.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley, New York (2002)

    Google Scholar 

  8. Engell-Nørregård, M., Erleben, K.: A projected back-tracking line-search for constrained interactive inverse kinematics. Comput. Graph. 35(2), 288–298 (2011)

    Article  Google Scholar 

  9. Eriksson, A.: Temporal finite elements for target control dynamics of mechanisms. Comput. Struct. 85, 1399–1408 (2007)

    Article  MathSciNet  Google Scholar 

  10. Eriksson, A., Nordmark, A.: Temporal finite element formulation of optimal control in mechanisms. Comput. Methods Appl. Mech. Eng. 199(25–28), 1783–1792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eriksson, A., Nordmark, A.: Activation dynamics in the optimization of targeted movements. Comput. Struct. 89(11–12), 968–976 (2011)

    Article  Google Scholar 

  12. Fang, A., Pollard, N.: Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22(3), 417–426 (2003) (SIGGRAPH 2003)

    Article  Google Scholar 

  13. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SNOPT version 7: software for large-scale nonlinear programming. Tech. rep., Stanford, CA, USA (2006)

  14. Gittoes, M.J., Brewin, M.A., Kerwin, D.G.: Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot-heel landings. Hum. Mov. Sci. 25, 775–787 (2006)

    Article  Google Scholar 

  15. Gruber, K., Ruder, H., Denoth, J., Schneider, K.: A comparative study of impact dynamics: wobbling mass model versus rigid body models. J. Biomech. 31, 439–444 (1998)

    Article  Google Scholar 

  16. Hatze, H.: A comprehensive model for human motion simulation and its application to the take-off phase of the long jump. J. Biomech. 14(3), 135–142 (1981)

    Article  Google Scholar 

  17. Hof, A.L.: The equations of motion for a standing human reveal three mechanisms for balance. J. Biomech. 40, 451–457 (2007)

    Article  Google Scholar 

  18. Kaphle, M., Eriksson, A.: Optimality in forward dynamics simulations. J. Biomech. 41(6), 1213–1221 (2008). doi:10.1016/j.jbiomech.2008.01.021

    Article  Google Scholar 

  19. King, M.A., Wilson, C., Yeadon, M.R.: Evaluation of a torque-driven model of jumping for height. J. Appl. Biomech. 22, 264–274 (2006)

    Google Scholar 

  20. King, M.A., Yeadon, M.R.: Maximising somersault rotation in tumbling. J. Biomech. 37(4), 471–477 (2004)

    Article  Google Scholar 

  21. Koschorreck, J., Mombaur, K.: Modeling and optimal control of human platform diving with somersaults and twists. Optim. Eng. 13(1), 29–56 (2011)

    Article  MathSciNet  Google Scholar 

  22. Kosterina, N., Westerblad, H., Eriksson, A.: Mechanical work as predictor of force enhancement and force depression. J. Biomech. 42, 1628–1634 (2009)

    Article  Google Scholar 

  23. Kosterina, N., Westerblad, H., Eriksson, A.: History effect and timing of force production introduced in a skeletal muscle model. Biomech. Model. Mechanobiol. 11(7), 947–957 (2012)

    Article  Google Scholar 

  24. Marshall, R., Wood, G., Jennings, L.: Performance objectives in human movement: a review and application to the stance phase of normal walking. Hum. Mov. Sci. 8, 571–594 (1989)

    Article  Google Scholar 

  25. Menegaldo, L.L., de Toledo Fleury, A., Weber, H.I.: A ‘cheap’ optimal control approach to estimate muscle forces in musculoskeletal systems. J. Biomech. 39(10), 1787–1795 (2006)

    Article  Google Scholar 

  26. Panne, M.V.D.: From footprints to animation. Comput. Graph. Forum 16, 211–223 (1997)

    Article  Google Scholar 

  27. Pettersson, R., Nordmark, A., Eriksson, A.: Free-time optimization of targeted movements based on temporal FE approximation. In: Proceedings of the Tenth International Conference on Computational Structures Technology (2010)

    Google Scholar 

  28. Spägele, T., Kistner, A., Gollhofer, A.: Modelling, simulation and optimisation of a human vertical jump. J. Biomech. 32, 521–530 (1999)

    Article  Google Scholar 

  29. Wilson, C., King, M.A., Yeadon, M.R.: Determination of subject-specific model parameters for visco-elastic elements. J. Biomech. 39, 1883–1890 (2006)

    Article  Google Scholar 

  30. Wilson, C., Yeadon, M.R., King, M.A.: Considerations that affect optimised simulation in a running jump for height. J. Biomech. 40, 3155–3161 (2007)

    Article  Google Scholar 

  31. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based prediction of asymmetric human gait. J. Biomech. 44, 683–693 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Eriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersson, R., Nordmark, A. & Eriksson, A. Optimisation of multiple phase human movements. Multibody Syst Dyn 30, 461–484 (2013). https://doi.org/10.1007/s11044-013-9349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9349-8

Keywords

Navigation