Multibody System Dynamics

, Volume 30, Issue 2, pp 185–197 | Cite as

A new switching strategy for addressing Euler parameters in dynamic modeling and simulation of rigid multibody systems

Article

Abstract

This paper presents a new numerical strategy to address the extraneous coordinates in the Euler parameters. These parameters are unit quaternions with four variables, which have been used to describe the three rotational degrees-of-freedom (DOF) of a rigid body. This redundancy avoids the singularity issue that appears in the other rotational description methods including, Euler angles (3 parameters), direction cosines (9 parameters), and the Rodrigues parameters (3 parameters). However, these parameters must satisfy a normality constraint. A numerical and online constraint embedding method is invoked to address this holonomic constraint implicitly. It leads to a reduction of the equations of motion to a minimal form. However, the proposed method requires a procedure for the selection of the dependent Euler parameters. Several alternatives were examined and the best one is proposed as the method to use in this situation. They check specific conditions including, condition number of the mass and constraint matrices, to make a decision about retaining or switching the current dependent parameter. The effectiveness of the three different selection algorithms are examined using a 3D double pendulum with ball-and-socket joints. The results show the ability of the proposed strategy to handle drifting and singularity issues.

Keywords

Rigid multibody dynamics Euler parameters Holonomic constraint Constraint embedding 

References

  1. 1.
    Andreis, D., Canuto, E.S.: Orbit dynamics and kinematics with full quaternions. In: Proceedings of the 2004 American Control Conference, vol. 4, p. 3660 (2004) Google Scholar
  2. 2.
    Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 3(1), 011005 (2008) CrossRefGoogle Scholar
  3. 3.
    Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7, 265–284 (2002). doi:10.1023/A:1015285428885 MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64, 86–98 (1994). doi:10.1007/BF00789100 MATHGoogle Scholar
  5. 5.
    Bowling, A., Haghshenas-Jaryani, M.: Spatial multibody dynamics of nano-scale motor protein locomotion. In: Proceedings of the 1st International Conference on Bionics and Biomechanics (ICABB) (2010) Google Scholar
  6. 6.
    Bowling, A., Palmer, A.F.: The small mass assumption applied to the multibody dynamics of motor proteins. J. Biomech. 42(9), 1218–1223 (2009). doi:10.1016/j.jbiomech.2009.03.017, http://www.jbiomech.com/issues CrossRefGoogle Scholar
  7. 7.
    Bowling, A., Palmer, A.F., Wilhelm, L.: Contact and impact in the multibody dynamics of motor protein locomotion. Langmuir 25(22), 12,974–12,981 (2009). http://pubs.acs.org/toc/langd5/0/0 CrossRefGoogle Scholar
  8. 8.
    Chou, J.C.K.: Quaternion kinematic and dynamic differential equations. IEEE Trans. Robot. Autom. 8(1), 53 (1992) CrossRefGoogle Scholar
  9. 9.
    Coutsias, E.A., Romero, L.: The quaternions with applications to rigid body dynamics. Tech. rep., Sandia National Laboratories (2004) Google Scholar
  10. 10.
    Dooley, J.R., McCarthy, J.M.: Spatial rigid body dynamics using dual quaternion components. In: IEEE International Conference on Robotics and Automation. Proceedings, p. 90 (1991) Google Scholar
  11. 11.
    Gillespie, R.B., Patoglu, V., Hussein, I.I., Westervelt, E.R.: On-line symbolic constraint embedding for simulation of hybrid dynamical systems. Multibody Syst. Dyn. 14(3–4), 387–417 (2005) MATHCrossRefGoogle Scholar
  12. 12.
    Haghshenas-Jaryani, M., Bowling, A.: Multiscale dynamic modeling of processive motor proteins. In: Proceedings of the IEEE International Conference Robotics and Biomimetics (ROBIO), pp. 1403–1408 (2011) Google Scholar
  13. 13.
    Haghshenas-Jaryani, M., Bowling, A.: Spatial multibody dynamics of motor proteins. In: Proceedings of Multibody Dynamics 2011, An ECCOMAS Thematic Conference (2011) Google Scholar
  14. 14.
    de Jalón, J.G., Unda, J., Avello, A., Jiménez, J.M.: Dynamic analysis of three-dimensional mechanisms in “natural” coordinates. J. Mech. Transm. Autom. Des. 109(4), 460–465 (1987). doi:10.1115/1.3258818, http://link.aip.org/link/?JMT/109/460/1 CrossRefGoogle Scholar
  15. 15.
    Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications, 1st edn. McGraw-Hill, New York (1985) Google Scholar
  16. 16.
    Kleppmann, M.: Simulation of colliding constrained rigid bodies. Tech. Rep. 683, University of Cambridge (2007) Google Scholar
  17. 17.
    Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 3(1), 011004 (2008) CrossRefGoogle Scholar
  18. 18.
    Liang, C.G., Lance, G.M.: A differentiable null space method for constrained dynamic analysis. J. Mech. Transm. Autom. Des. 109, 405–411 (1987) CrossRefGoogle Scholar
  19. 19.
    Morton, H.S.: Hamiltonian and Lagrangian formulations of rigid body rotational dynamics based on Euler parameters. J. Astronaut. Sci. 41, 561–591 (1993) MathSciNetGoogle Scholar
  20. 20.
    Nikravesh, P.E., Chung, I.S.: Application of Euler parameters to the dynamic analysis of three dimensional constrained mechanical systems. J. Mech. Des. 104, 785–791 (1982) CrossRefGoogle Scholar
  21. 21.
    Potra, F.A., Yen, J.: Implicit numerical integration for Euler-Lagrange equations via tangent space parametrization*. Mech. Struct. Mach. 19(1), 77–98 (1991). doi:10.1080/08905459108905138, http://www.tandfonline.com/doi/abs/10.1080/08905459108905138 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ravani, B., Roth, B.: Mappings of spatial kinematics. ASME J. Transm. Autom. Des. 106 (1984) Google Scholar
  23. 23.
    Singh, R.P., Likins, P.W.: Singular value decomposition for constrained dynamical systems. J. Appl. Mech. 52(4), 943–948 (1985). http://link.aip.org/link/?AMJ/52/943/1 MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringThe University of Texas at ArlingtonArlingtonUSA

Personalised recommendations