Skip to main content
Log in

Pilot study on proximal femur strains during locomotion and fall-down scenario

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The most common and severe type of fracture among the elderly is known as a proximal femur fracture. Aging-related bone loss is one of the major contributing factors to increased likelihood of bone fracture. Specific exercises can be used to strain bones and increase bone strength to counter the effects of bone loss. The flexible multibody simulation approach can be used as a non-invasive method for estimating bone strains caused by physical activity. This method was recently used to analyze the strain of locomotion in regard to human femur and tibia leg bones. The current study focuses on strain analysis of the femoral neck. The research test person was a clinically healthy 65-year old Caucasian male. The computed tomography was used to build a geometrically accurate finite element model of the femur with inhomogeneous material properties derived from the voxel data. The anthropometric data was used to model the musculoskeletal system of the test person. The multibody skeletal model was utilized to estimate loading on the femoral neck during walking, which represents a routine daily activity. The flexible multibody simulation results were compared to strains that occurred during a simulated fall onto the greater trochanter of the femur. The fall simulation was made entirely using finite element software. Results from the finite element analysis were compared with the previous study showing that the test person does not belong to the high-risk hip fracture group. Finally, the estimated strains gathered from the walking simulation were compared to the strain values from the simulated fall-down scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. International Osteoporosis Foundation: Osteoporosis in Europe: Indicators of Progress and Outcomes from the European Parliament Osteoporosis Interest Group and European Union Osteoporosis Consultation Panel Meeting (2004). http://www.iofbonehealth.org/download/osteofound/filemanager/publications/pdf/eu-report-2005.pdf

  2. Nieves, J., Bilezikian, J., Lane, J., Einhorn, T., Wang, Y., Steinbuch, M., Cosman, F.: Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos. Int. 21(3), 399–408 (2010)

    Article  Google Scholar 

  3. Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23, 399–407 (1998)

    Article  Google Scholar 

  4. Arokoski, J.P., Jurvelin, J.S., Väätäinen, U., Helminen, H.J.: Normal and pathological adaptations of articular cartilage to joint loading. Scand. J. Med. Sci. Sports 10(4), 186–198 (2000)

    Article  Google Scholar 

  5. Sharkey, N.A., Hamel, A.J.: A dynamic cadaver model of the stance phase of gait: performance characteristics and kinetic validation. Clin. Biomech. 13(6), 420–433 (1998)

    Article  Google Scholar 

  6. Guterla, C.C., Gardnerc, T.R., Rajanb, V., Ahmadc, C.S., Hunga, C.T., Ateshian, G.A.: Two-dimensional strain fields on the cross section of the human patellofemoral joint under physiological loading. J. Biomech. 42(9), 1275–1281 (2009)

    Article  Google Scholar 

  7. Peterman, M.M., Hamel, A.J., Cavanagh, P.R., Piazza, S.J., Sharkey, N.A.: In vitro modeling of human tibial strains during exercise in micro-gravity. J. Biomech. 34(5), 693–698 (2001)

    Article  Google Scholar 

  8. Lanyon, L.E., Hampson, W.G.J., Goodship, A.E., Shah, J.S.: Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop. Scand. 46, 256–268 (1975)

    Article  Google Scholar 

  9. Burr, D.B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, M., Finestone, A., Hoshaw, S., Saiag, E., Simkin, A.: In vivo measurement of human tibial strains during vigorous activity. Bone 18(5), 405–410 (1996)

    Article  Google Scholar 

  10. Hoshaw, S.J., Fyhrie, D.P., Takano, Y., Burr, D.B., Milgrom, C.: A method suitable for in vivo measurement of bone strain in humans. J. Biomech. 30(5), 521–524 (1997)

    Article  Google Scholar 

  11. Milgrom, C., Finestone, A., Benjoyan, N., Simkin, A., Ekenman, I., Burr, D.B.: Measurement of strain and strain rate developed by jumping exercises in vivo in humans. In: Proceedings of Southern Biomedical Engineering Conference, p. 108 (1998)

    Chapter  Google Scholar 

  12. Dujovne, A., Wevers, H.W.: Experimental measurements of proximal tibial displacements under load: comparison with FE models. J. Biomech. 22(10), 1006 (1989)

    Article  Google Scholar 

  13. Marom, S.A., Linden, M.J.: Computer aided stress analysis of long bones utilizing computed tomography. J. Biomech. 23(5), 399–404 (1990)

    Article  Google Scholar 

  14. Hof, A.L.: An explicit expression for the moment in multibody systems. J. Biomech. 25(10), 1209–1211 (1992)

    Article  MathSciNet  Google Scholar 

  15. Soutas-Little, R.W., Lovasik, K.A., Krueger, M.: Multibody systems analysis of above-knee prostheses to permit rapid gait (racewalking). Adv. Bioeng. 20, 543–546 (1991)

    Google Scholar 

  16. Al Nazer, R., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: Flexible multibody simulation approach in the analysis of tibial strain during walking. J. Biomech. 41(5), 1036–1043 (2008)

    Article  Google Scholar 

  17. Al Nazer, R., Klodowski, A., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: Analysis of dynamic strains in tibia during human locomotion based on flexible multibody approach integrated with magnetic resonance imaging technique. Multibody Syst. Dyn. 20(4), 287–306 (2008)

    Article  MATH  Google Scholar 

  18. Kłodowski, A., Rantalainen, T., Mikkola, A., Heinonen, A., Sievänen, H.: Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst. Dyn. 25(4), 395–409 (2011)

    Article  MATH  Google Scholar 

  19. Orwoll, E., Marshall, L., Nielson, C., Cummings, R., Lapidus, S.J., Cauley, J.A., Ensrud, K., Lane, N., Hoffmann, P.R., Kopperdahl, D.L., Keaveny, T.M.: Finite element analysis of the proximal femur and hip fracture risk in older men. J. Bone Miner. Res. 24(3), 475–483 (2009)

    Article  Google Scholar 

  20. Aamodt, A., Lund-Larsen, J., Eine, J., Andersen, E., Benum, P., Schnell Husby, O.: In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur. J. Orthop. Res. 15(6), 927–931 (1997)

    Article  Google Scholar 

  21. ANSYS, Inc., ANSYS® Academic Research, Release 11.0, Help System, Element Reference (2007)

  22. Agrawal, O.P., Shabana, A.A.: Dynamic analysis of multibody systems using component modes. Comput. Struct. 21(6), 1303–1312 (1985)

    Article  Google Scholar 

  23. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn., p. 374. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  24. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

    Article  Google Scholar 

  25. Hounsfield, G.N.: Computerized transverse axial scanning (tomography). Part 1. Description of system. Br. J. Radiol. 46, 1016–1022 (1973)

    Article  Google Scholar 

  26. Rho, J.Y., Hobatho, M.C., Ashman, R.B.: Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. 17(5), 347–355 (1995)

    Article  Google Scholar 

  27. Espinoza Oriaz, A.A., Deuerling, J.M., Landrigan, M.D., Renaud, E., Roeder, R.K.: Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur. J. Mech. Behav. Biomed. Mater. 2(3), 255–263 (2009)

    Article  Google Scholar 

  28. Van Rietbergen, B., Odgaard, A., Kabel, J., Huiskes, R.: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J. Biomech. 29(12), 1653–1657 (1996)

    Google Scholar 

  29. de Bakker, P.M., Manske, S.L., Ebacher, V., Oxland, T.R., Cripton, P.A., Guy, P.: During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J. Biomech. 42(12), 1917–1925 (2009)

    Article  Google Scholar 

  30. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  31. MSC.Software, MSC.ADAMS®, Release R3, Help System (2008)

  32. LMS Engineering Innovation. LMS Virtual. Lab (2011). http://www.lmsintl.com/virtuallab

  33. Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the AnyBody modeling system. Simul. Model. Pract. Theory 14(8), 1100–1111 (2006)

    Article  Google Scholar 

  34. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. Biomed. Eng. 54(11), 1940–1950 (2007)

    Google Scholar 

  35. Chao, E., Armiger, R., Yoshida, H., Lim, J., Haraguchi, N.: Virtual interactive musculoskeletal system (VIMS) in orthopaedic research, education and clinical patient care. J. Orthop. Surg. Res. 2(1), 2–21 (2007)

    Article  Google Scholar 

  36. Erdman, A.G., Sandor, G.N.: Kineto-elastodynamics—a review of the state of the art trends. Mech. Mach. Theory 7(1), 19–33 (1972)

    Article  Google Scholar 

  37. Kamman, J.W., Huston, R.L.: Multibody dynamics modeling of variable length cable systems. Multibody Syst. Dyn. 5(3), 211–221 (2001)

    Article  MATH  Google Scholar 

  38. Raman-Nair, W., Baddour, R.E.: Three-dimensional dynamics of a flexible marine riser undergoing large elastic deformations. Multibody Syst. Dyn. 10(4), 393–423 (2003)

    Article  MATH  Google Scholar 

  39. C. U. Biomechanics Research Group Inc. LifeMOD online user’s manual (2008). http://www.lifemodeler.com/LM_Manual_2008/

  40. Gilchrist, L.A., Winter, D.A.: A two-part, viscoelastic foot model for use in gait simulations. J. Biomech. 29(6), 795–798 (1996)

    Article  Google Scholar 

  41. Wakao, N., Harada, A., Matsui, Y., Takemura, M., Shimokata, H., Mizuno, M., Ito, M., Matsuyama, Y., Ishiguro, N.: The effect of impact direction on the fracture load of osteoporotic proximal femurs. Med. Eng. Phys. 31(9), 1134–1139 (2009)

    Article  Google Scholar 

  42. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14(11), 793–801 (1981)

    Article  Google Scholar 

  43. Rantalainen, T., Klodowski, A., Piitulainen, H.: Effect of innervation zones in estimating biceps brachii force-EMG relationship during isometric contraction. J. Electromyogr. Kinesiol. 22(1), 80–87 (2012)

    Article  Google Scholar 

  44. Amarantini, D., Rao, G., Berton, E.: A two-step EMG-and-optimization process to estimate muscle force during dynamic movement. J. Biomech. 43(9), 1827–1830 (2010)

    Article  Google Scholar 

  45. Gordon, C.C., Churchill, T., Clauser, C.E., Bradtmiller, B., McConville, J.T., Tebbets, I., Walker, R.A.: Anthropometric survey of U.S. army personnel, methods and summary statistics (1989)

  46. Dao, T.T., Marin, F., Ho Ba Tho, M.C.: Sensitivity of the anthropometrical and geometrical parameters of the bones and muscles on a musculoskeletal model of the lower limbs. In: 31st Annual International Conference of the IEEE EMBS, Minneapolis, Minnesota, USA, September 2–6, pp. 5251–5254 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Kłodowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kłodowski, A., Valkeapää, A. & Mikkola, A. Pilot study on proximal femur strains during locomotion and fall-down scenario. Multibody Syst Dyn 28, 239–256 (2012). https://doi.org/10.1007/s11044-012-9312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9312-0

Keywords

Navigation