Skip to main content
Log in

Real-time flexible multibody simulation with Global Modal Parameterization

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Many applications require fast and even real-time multibody simulations. Until recently, strongly simplified models were used in order to reach real-time constraints. A novel system-level model reduction technique, namely Global Modal Parameterization (GMP), enables the reduction of a complex mechanism, incorporating flexibility. This technique groups all computationally demanding tasks in a preprocessing phase, which allows the actual simulation to run at real-time. The main strength of the algorithm lies in the fact that the original system of differential-algebraic equations is transformed into a system of ordinary differential equations, which can easily be integrated with explicit methods. This work shortly reviews the GMP-method for systems undergoing 3D motion with multiple rigid DOFs. Furthermore the framework for hard real-time simulation with GMP is discussed. The novelty is the description of a simulation method for a GMP model with an explicit time integrator, which is deployable on hard real-time systems. One of the method’s advantages is the a priori known computational load for each timestep, allowing hard real-time simulations. The method is benchmarked for a flexible spatial slider-crank mechanism, modeled in a commercial flexible multibody package. This is the first application of the GMP-approach on an original floating-frame-of-reference component mode synthesis model undergoing highly dynamical motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Nonholonomic constraints are not considered in this work.

  2. A gradient/Jacobian of an entity A with respect to a vector b will be denoted as A ,b .

  3. All computations are performed on an Intel Duo Core T8300 with Windows 7 64-bit.

References

  1. Wasfy, T., Noor, A.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2002)

    Article  Google Scholar 

  2. Agrawal, O.P., Shabana, A.A.: Dynamic analysis of multibody systems using component modes. Comput. Struct. 21(6), 1303–1312 (1985)

    Article  Google Scholar 

  3. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  4. Geradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  5. Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1, 259–280 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rulka, W., Pankiewicz, E.: MBS approach to generate equations of motions for HiL-simulations in vehicle dynamics. Multibody Syst. Dyn. 14(3–4), 367–386 (2005)

    Article  MATH  Google Scholar 

  7. Schiehlen, W.: Multibody system dynamics: Roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yen, J.: Constrained equations of motion in multibody dynamics as ode’s on manifolds. SIAM J. Numer. Anal. 30, 553–568 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arnold, M., Burgermeister, B., Eichberger, A.: Linearly implicit time integration methods in real-time applications: DAE and stiff odes. Multibody Syst. Dyn. 17, 99–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, S.-S., Jeong, Wa.: Real-time multibody vehicle model with bush compliance effect using quasi-static analysis for HiLs. Multibody Syst. Dyn. 22, 367–382 (2009)

    Article  MATH  Google Scholar 

  11. Lugris, U.: Real-time methods in flexible multibody dynamics. PhD thesis, University of La Coruna, La Coruna (2008)

  12. Brüls, O., Duysinx, P., Golinval, J.-C.: The global modal parameterization for nonlinear model-order reduction in flexible multibody dynamics. Int. J. Numer. Methods Eng. 69(5), 948–977 (2007)

    Article  MATH  Google Scholar 

  13. Heirman, G.H.K., Naets, F., Desmet, W.: A system-level model reduction technique for the efficient simulation of flexible multibody systems. Int. J. Numer. Methods Eng. 85, 330–354 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heirman, G.H.K., Naets, F., Desmet, W.: Forward dynamical analysis of flexible multibody systems using system-level model reduction. Multibody Syst. Dyn. 25, 97–113 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Naets, F., Heirman, G.H.K., Vandepitte, D., Desmet, W.: Inertial force term approximations for the use of global modal parameterization for planar mechanisms. Int. J. Numer. Methods Eng. 85, 518–536 (2010)

    Article  MathSciNet  Google Scholar 

  16. LMS International: LMS virtual.lab motion. http://www.lmsintl.com/simulation/virtuallab/motion

  17. Brüls, O., Duysinx, P., Golinval, J.-C.: A model reduction method for the control of rigid mechanisms. Multibody Syst. Dyn. 15(3), 213–227 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heirman, G.H.K., Bruls, O., Desmet, W.: System-level model reduction technique for efficient simulation of flexible multibody dynamics. In: Proceedings of the ECCOMAS Thematic Conference in Multibody Dynamics (2009)

    Google Scholar 

  19. Brüls, O.: Integrated simulation and reduced-order modeling of controlled flexible multibody systems. PhD thesis, Université de Liège, Liège (2005)

  20. Dopico, D., Lugris, U., Gonzalez, M., Cuadrado, J.: Two implementations of irk integrators for real-time multibody dynamics. Int. J. Numer. Methods Eng. 65, 2091–2111 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hulbert, G.M., Chung, J.: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput. Methods Appl. Mech. Eng. 137, 175–188 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Daniel, W.J.T.: Explicit/implicit partitioning and a new explicit form of the generalized alpha method. Commun. Numer. Methods Eng. 19, 909–920 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Amsallem, D., Corial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Eng. 80(9), 1241–1258 (2009)

    Article  MATH  Google Scholar 

  25. Naets, F., Heirman, G.H.K., Desmet, W.: Reduced-order-model interpolation for use in global modal parameterization. In: Proceedings of the International Conference on Noise and Vibration Engineering, ISMA 2010, KU Leuven (2010)

  26. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Vol. 1: Basic Methods. Allyn & Bacon, Needham Heights (1989)

    Google Scholar 

  27. Yoo, W.S.: Dynamics of flexible mechanical systems using finite element lumped mass approximation and static correction modes. PhD thesis, University of Iowa, Iowa (1985)

  28. MSC Software: MSC.nastran 2004 quick reference guide. http://www.mscsoftware.com/Products/CAE-Tools/MSC-Nastran.aspx

  29. Craig, R.R., Bampton, M.: Coupling of substructures in dynamic analysis. AIAA J. 6(7), 1313–1321 (1968)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research of Frank Naets and Gert Heirman is funded by a Ph.D. grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). The European Commission is gratefully acknowledged for the support of the Marie Curie ITN “VECOM” FP7-213543, from which Tommaso Tamarozzi holds an “Initial Training Grant” (http://www.vecom.org/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Naets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naets, F., Tamarozzi, T., Heirman, G.H.K. et al. Real-time flexible multibody simulation with Global Modal Parameterization. Multibody Syst Dyn 27, 267–284 (2012). https://doi.org/10.1007/s11044-011-9298-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9298-z

Keywords

Navigation