Advertisement

Multibody System Dynamics

, Volume 28, Issue 1–2, pp 181–197 | Cite as

Modeling of the condyle elements within a biomechanical knee model

  • Ana Ribeiro
  • John Rasmussen
  • Paulo Flores
  • Luís F. Silva
Article

Abstract

The development of a computational multibody knee model able to capture some of the fundamental properties of the human knee articulation is presented. This desideratum is reached by including the kinetics of the real knee articulation. The research question is whether an accurate modeling of the condyle contact in the knee will lead to reproduction of the complex combination of flexion/extension, abduction/adduction, and tibial rotation observed in the real knee. The model is composed by two anatomic segments, the tibia and the femur, whose characteristics are functions of the geometric and anatomic properties of the real bones. The biomechanical model characterization is developed under the framework of multibody systems methodologies using Cartesian coordinates. The type of approach used in the proposed knee model is the joint surface contact conditions between ellipsoids, representing the two femoral condyles, and points, representing the tibial plateau and the menisci. These elements are closely fitted to the actual knee geometry. This task is undertaken by considering a parameter optimization process to replicate experimental data published in the literature, namely that by Lafortune and his coworkers in 1992. Then kinematic data in the form of flexion/extension patterns are imposed on the model corresponding to the stance phase of the human gait. From the results obtained, by performing several computational simulations, it can be observed that the knee model approximates the average secondary motion patterns observed in the literature. Because the literature reports considerable inter-individual differences in the secondary motion patterns, the knee model presented here is also used to check whether it is possible to reproduce the observed differences with reasonable variations of bone shape parameters. This task is accomplished by a parameter study, in which the main variables that define the geometry of condyles are taken into account. It was observed that the data reveal a difference in secondary kinematics of the knee in flexion versus extension. The likely explanation for this fact is the elastic component of the secondary motions created by the combination of joint forces and soft tissue deformations. The proposed knee model is, therefore, used to investigate whether this observed behavior can be explained by reasonable elastic deformations of the points representing the menisci in the model.

Keywords

Knee modeling Stance phase Condyles Multibody methodologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bei, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26, 777–789 (2004) CrossRefGoogle Scholar
  2. 2.
    Piazza, S.J., Delp, S.C.: Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123(6), 599–606 (2001) CrossRefGoogle Scholar
  3. 3.
    Blajer, W., Czaplicki, A., Dziewiecki, K., Mazur, Z.: Influence of selected modeling and computational issues on muscle force estimates. Multibody Syst. Dyn. 24, 473–492 (2010) zbMATHCrossRefGoogle Scholar
  4. 4.
    Mohamed, A.A., Brown, M.A., Shabana, A.A.: Study of the ligament tension and cross-section deformation using nonlinear finite element/multibody system algorithms. Multibody Syst. Dyn. 23, 227–248 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Jones, M.L., Hickman, J., Knox, J.A.: Validated finite element method study of orthodontic tooth movement in the human subject. J. Orthod. 28(1), 29–38 (2001) CrossRefGoogle Scholar
  6. 6.
    Halloran, J.P., Petrella, A.J., Rullkoetter, P.J.: Explicit finite element modeling of total knee replacement mechanics. J. Biomech. 38(2), 323–331 (2005) CrossRefGoogle Scholar
  7. 7.
    Silva, M.P.T., Ambrósio, J.A.C.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8(2), 219–239 (2002) zbMATHCrossRefGoogle Scholar
  8. 8.
    Rasmussen, J., Damsgaard, M., Christensen, S., Surma, E.: Design optimization with respect to ergonomic properties. Structural and Multidisciplinan Optimization 24(2), 89–97 (2002) CrossRefGoogle Scholar
  9. 9.
    Begon, M., Colloud, F., Sardain, P.: Lower limb contribution in kayak performance: modelling, simulation and analysis. Multibody Syst. Dyn. 23, 387–400 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Meireles, F., Machado, M., Silva, M., Flores, P.: Dynamic modeling and analysis of human locomotion using multibody system methodologies. Int. J. Comput. Vis. Biomech. 2(2), 199–206 (2009) Google Scholar
  11. 11.
    Kłodowski, A., Rantalainen, T., Mikkola, A., Heinonen, A., Sievänen, H.: Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst. Dyn. 25(4), 395–409 (2001) CrossRefGoogle Scholar
  12. 12.
    Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988) Google Scholar
  13. 13.
    Schiehlen, W.: Multibody Systems Handbook. Springer, Berlin (1990) zbMATHCrossRefGoogle Scholar
  14. 14.
    Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1989) zbMATHGoogle Scholar
  15. 15.
    Ambrosio, J.: Rigid and flexible multibody dynamics tools for the simulation of systems subjected to contact and impact conditions. Eur. J. Mech. A, Solids 19, S23–44 (2000) Google Scholar
  16. 16.
    TNO, 1998, MADYMO™ Theoretical manual, Version 5.3, TNO, Delft, The Netherlands Google Scholar
  17. 17.
    AnyBody™Technology, Computer Aided Ergonomics & Biomechanics (http://www.anybodytech.com/)
  18. 18.
    Monteiro, N.M.B., Silva, M.P.T., Folgado, J.O.M.G., Melancia, J.P.L.: Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation. Multibody Syst. Dyn. 25(2), 245–270 (2011) CrossRefGoogle Scholar
  19. 19.
    Pandy, M.G.: Computer modeling and simulation of human movement. Annu. Rev. Biomed. Eng. 3, 245–273 (2001) CrossRefGoogle Scholar
  20. 20.
    Cappozzo, A., Gazzani, F.: Joint kinematic assessement during physical exercise. In: Berme, N., Cappozzo, A. (eds.) Biomechanics of Human Movement: Applications in Rehabilitation, Sports and Ergonomics, pp. 263–274. Bertec, Worthington (1990) Google Scholar
  21. 21.
    Steven, N.K.: Geared six-bar design. In: Proceedings of the Second Applied Mechanisms Conference, Oklahoma State University, October 1971, Paper No. 25 (1971) Google Scholar
  22. 22.
    Steven, N.K., Kramer, N., Srinivasan, S.: Design of a knee mechanism for a knee disarticulation prosthesis. In: Proceedings of the ASME Mechanisms Conference, Minneapolis, September 1994, DE-Vol. 71, pp. 455–462 (1994) Google Scholar
  23. 23.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1(3), 240–247 (2006) CrossRefGoogle Scholar
  24. 24.
    Flores, P., Ambrósio, J., Claro, J.C.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004) zbMATHCrossRefGoogle Scholar
  25. 25.
    Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011) CrossRefGoogle Scholar
  26. 26.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 0110071-10 (2008) CrossRefGoogle Scholar
  27. 27.
    Fialho, J.C., Fernandes, P.R., Eça, L., Folgado, J.: Computational hip joint simulator for wear and heat generation. J. Biomech. 40, 2358–2366 (2007) CrossRefGoogle Scholar
  28. 28.
    Machado, M., Flores, P., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60(3), 459–478 (2010) zbMATHCrossRefGoogle Scholar
  29. 29.
    Ottoboni, A., Parenti-Castelli, V., Sancisi, N., Belvedere, C., Leardini, A.: Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint. Proc. Inst. Mech. Eng. Part. H, J. Eng. Med. 224(9), 1121–1132 (2010) CrossRefGoogle Scholar
  30. 30.
    Ribeiro, A.: A biomechanical multibody knee model based on ellipsoids: modeling, simulation and analysis. MSc Thesis, University of Minho, Portugal (2010) Google Scholar
  31. 31.
    Strasser, H.: Lehrbuch der muskel und gelenkmechanik. Springer, Berlin (1917) Google Scholar
  32. 32.
    Menschik, A.: Mechanik des kniegelenkes Teil 1. Z. Orthoped. 112, 481 (1974) Google Scholar
  33. 33.
    Crowninshield, R., Pope, M.H., Johnson, R.J.: An analytical model of the knee. J. Biomech. 9, 397–405 (1976) CrossRefGoogle Scholar
  34. 34.
    Wismans, J., Veldpaus, F., Janssen, J., Huson, A., Struben, P.: A three-dimensional mathematical model of the knee-joint. J. Biomech. 13(8), 677–685 (1980) CrossRefGoogle Scholar
  35. 35.
    Moeinzadeh, M.H., Engin, A.E., Akkas, N.: Two-dimensional dynamic modeling of human knee joint. J. Biomech. 316(4), 253–264 (1983) CrossRefGoogle Scholar
  36. 36.
    Abdel-Rahman, E.M., Hefzy, M.S.: A two-dimensional dynamic anatomical model of the human knee joint. J. Biomech. Eng. 115, 357–365 (1993) CrossRefGoogle Scholar
  37. 37.
    Abdel-Rahman, E.M., Hefzy, M.S.: Three-dimensional dynamic behaviour of the human knee joint under impact loading. Med. Eng. Phys. 20, 276–290 (1998) CrossRefGoogle Scholar
  38. 38.
    Piazza, S.J., Delp, S.L.: Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123, 599–606 (2001) CrossRefGoogle Scholar
  39. 39.
    Flores, P., Leine, R., Glocker, C.: Modeling and analysis of rigid multibody systems with translational clearance joints based on the nonsmooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Guess, T.M.: Forward dynamics simulation using a natural knee with menisci in the multibody framework. In: Ambrósio, J., et al. (eds.) Proceedings of the EUROMECH Colloquium 511 on Biomechanics of Human Motion, Ponta Delgada, Azores, Portugal, March 9–12 (2011), 15 p. Google Scholar
  41. 41.
    Hirokova, S.: Three-dimensional mathematical model analysis of the patella-femoral joint. J. Biomech. 24, 659–671 (1991) CrossRefGoogle Scholar
  42. 42.
    Heegard, J., Leyvraz, P.F., Curnier, A., Rakotomanana, L., Huiskes, R.: Biomechanics of the human patella during passive knee flexion. J. Biomech. 28(11), 1265–1279 (1995) CrossRefGoogle Scholar
  43. 43.
    Essinger, J.R., Leyvraz, P.F., Heegard, J.H., Robertson, D.D.: Mathematical model for the evaluation of the behavior during flexion of condylar-type knee prostheses. J. Biomech. 22, 1229–1241 (1989) CrossRefGoogle Scholar
  44. 44.
    DeFrate, L.E., Papannagari, R., Gill, T.J., Moses, J.M., Pathare, N.P., Li, G.: The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34, 1240–1246 (2006) CrossRefGoogle Scholar
  45. 45.
    Lafortune, M.A., Cavanagh, P.R., Sommer, H.J., Kalenak, A.: Three-dimensional kinematics of the human knee during walking. J. Biomech. 25(4), 347–357 (1992) CrossRefGoogle Scholar
  46. 46.
    Sancisi, N., Paenti-Castelli, V.: On the role of ligaments in the guidance of the human knee passive motion. In: Ambrósio, J., et al. (eds.) Proceedings of the Euromech Colloquium 511 on Biomechanics of Human Motion, Ponta Delgada, Azores, Portugal, March 9–12 (2011), 9 p. Google Scholar
  47. 47.
    Benoit, D., Ramsey, D., Lamontagne, M., Xu, L., Wretenberg, P., Renström, P.: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24(2), 152–164 (2005) CrossRefGoogle Scholar
  48. 48.
    Andersen, M., Benoit, D., Damsgaard, M., Ramsey, D., Rasmussen, J.: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J. Biomech. 43, 268–273 (2010) CrossRefGoogle Scholar
  49. 49.
    Winter, D.A.: Biomechanics and Motor Control of Human Movement, 3rd edn. Wiley, Toronto (2005) Google Scholar
  50. 50.
    Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., Zee, M.D.: Analysis of musculoskeletal systems in the AnyBody Modeling System™. Simul. Model. Pract. Theory 14(8), 1100–1111 (2006) CrossRefGoogle Scholar
  51. 51.
    Li, K., Tashman, S., Fu, F., Harner, C., Zhang, X.: Automating analysis of the distal femur articular geometry based on three-dimensional surface data. Ann. Biomed. Eng. 48, 2928–2936 (2010) CrossRefGoogle Scholar
  52. 52.
    Shaffer, B., Kennedy, S., Klmikiewicz, J., Yao, L.: Preoperactive sizing of meniscal allografts in meniscus transplantation. Am. J. Sports Med. 28(4), 524–533 (2000) Google Scholar
  53. 53.
    Li, Z.M.: Functional degrees of freedom. Motor Control 10, 301–310 (2006) Google Scholar
  54. 54.
    Li, Z.M., Tang, J.: Coordination of thumb joints during opposition. J. Biomech. 40, 502–510 (2007) CrossRefGoogle Scholar
  55. 55.
    Page, A., Galvez, J.A., Baydal-Bertomeu, J.M., Mata, V., Belda-Lois, J.M.: Functional degrees of freedom of neck movements: linear models may overestimate variability. Gait Posture 28, S56 (2008) CrossRefGoogle Scholar
  56. 56.
    Page, A., Rosário, H., Gálvez, J.A., Mata, V.: Representation of planar motion of complex joints by means of rolling pairs. Application to neck motion. J. Biomech. 44, 747–750 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ana Ribeiro
    • 1
  • John Rasmussen
    • 2
  • Paulo Flores
    • 1
  • Luís F. Silva
    • 1
  1. 1.CT2M/Departamento de Engenharia MecânicaUniversidade do MinhoGuimarãesPortugal
  2. 2.The AnyBody Group, M-TechAalborg UniversityAalborgDenmark

Personalised recommendations