Skip to main content
Log in

An approach for modeling long flexible bodies with application to railroad dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Considering track flexibility in railroad vehicle simulations can lead to improved results. In modeling a railroad vehicle as a multibody system, track flexibility can be incorporated by using the floating frame of reference formulation (FFRF), which describes rail deformations in terms of shape functions defined in the track body frame of reference. However, the FFRF method is subject to two serious shortcomings, namely: it uses unreal track boundary conditions to calculate shape functions and requires a large number of functions to describe deformation. These shortcomings can be circumvented by defining shape functions in the trajectory frame of reference. Based on this notion, a new form of FFRF that can be used to describe the dynamics of long bodies subjected to moving loads (cable cars, zip-lines, elevator guides, pantograph catenary mechanism, etc.) was developed here. The shape functions selected in this work are based on the steady deformation exhibited by a beam on a Winkler foundation under the action of a moving load. However, other sets of shape functions more appropriate for transient dynamics are suggested. The definition of the deformation shape functions in a frame that moves with respect to the flexible body produces new terms in the generalized inertia forces of the flexible track. The proposed approach was applied to an unsuspended wheelset traveling on a tangent track supported on an elastic foundation. The results thus obtained under variable foundation stiffness conditions are discussed and comparisons made with the case of a rigid track. The new approach is also compared with the moving mass problem as solved with the mode superposition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O., Shabana, A.A.: Application of deformable-body mean axis to flexible multibody system dynamics. Comput. Methods Appl. Mech. Eng. 56(2), 217–245 (1986)

    Article  MATH  Google Scholar 

  2. Andersson, C., Abrahamsson, T.: Simulation of interaction between a train in general motion and a track. Veh. Syst. Dyn. 38(6), 433–455 (2002)

    Article  Google Scholar 

  3. Cardona, A.: Superelement modelling in flexible multibody dynamics. Multibody Syst. Dyn. 4, 245–266 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cardona, A., Géradin, M.: Modelling of superelements in mechanism analysis. Int. J. Numer. Methods Eng. 32, 1565–1593 (1991)

    Article  MATH  Google Scholar 

  5. Cavin, R.K., Dusto, A.R.: Hamilton’s principle: finite element methods and flexible body dynamics. AIAA J. 15(12), 1684–1690 (1977)

    Article  MATH  Google Scholar 

  6. Craig, R., Bampton, M.: Coupling of substructures for dynamics analysis. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  7. de Veubeke, B.F.: The dynamics of flexible bodies. Int. J. Eng. Sci. 14, 895–913 (1976)

    Article  MATH  Google Scholar 

  8. Dietz, S., Hippmann, G., Schupp, G.: Interaction of vehicles and flexible tracks by co-simulation of multibody vehicle systems and finite element track models. Veh. Syst. Dyn. Suppl. 37, 372–384 (2002)

    Google Scholar 

  9. Dukkipati, R.V., Dong, R.: Idealized steady state interaction between railway vehicle and track. Proc. Inst. Mech. Eng., F 213, 15–29 (1999)

    Article  Google Scholar 

  10. Dukkipati, R.V., Dong, R.: Impact loads due to wheel flats and shells. Veh. Syst. Dyn. 31(1), 1–22 (1999)

    Article  Google Scholar 

  11. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41, 749–777 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fryba, L.: Vibration of Solids and Structures under Moving Loads. Noordhoff, Groningen (1972)

    MATH  Google Scholar 

  13. Géradin, M., Cardona, A.: Flexible Multibody Dynamics. A finite element approach. Wiley, Chichester (2001)

    Google Scholar 

  14. Jezequel, L.: Response of periodic systems to a moving load. J. Appl. Mech. 48(3), 613–618 (1981)

    Article  MATH  Google Scholar 

  15. Johansson, A., Andersson, C.: Out-of round railway wheels-a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear. Veh. Syst. Dyn. 43(8), 539–559 (2005)

    Article  MATH  Google Scholar 

  16. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  17. Kalker, J.J.: On the rolling contact of two elastic bodies in the presence of dry friction. Thesis, Delft University of Technology, Delft (1967)

  18. Kato, I., Terumichi, Y., Adachi, M., Muller, S.: Dynamics of track/wheel systems on high-speed vehicles. In: Proceedings of Second Asian Conference on Multibody Dynamics, Seoul, South Korea, August 1–4 (2004)

    Google Scholar 

  19. Kenney, J.T. Jr.: Steady-state vibrations of beam on elastic foundation for moving load. J. Appl. Mech. 21, 359–364 (1954)

    MATH  Google Scholar 

  20. Knothe, K.L., Grassie, S.L.: Modeling of railway track and vehicle-track interaction at high frequencies. Veh. Syst. Dyn. 22, 209–262 (1993)

    Article  Google Scholar 

  21. Kovalev, R., Lysikov, N., Mikheev, G., Pogorelov, D., Simonov, V., Yazykov, V., Zakharov, S., Zharov, I., Goryacheva, I., Soshenkov, S., Torskaya, E.: Freight car models and their computer-aided dynamic analysis. Multibody Syst. Dyn. 22, 399–423 (2009)

    Article  MATH  Google Scholar 

  22. Lehner, M., Eberhard, P.: A two-step approach for model reduction in flexible multibody dynamics. Multibody Syst. Dyn. 22, 399–423 (2007)

    MathSciNet  Google Scholar 

  23. Mallik, A.K., Chandra, S., Singh, A.B.: Steady-state response of an elastically supported infinite beam to a moving load. J. Sound Vib. 291, 1148–1169 (2006)

    Article  Google Scholar 

  24. Malvezzi, M., Meli, E., Falomi, S., Rindi, A.: Determination of wheel-rail contact points with semianalytic methods. Multibody Syst. Dyn. 20, 327–358 (2008)

    Article  MATH  Google Scholar 

  25. Newton, S.G., Clark, R.A.: An investigation into the dynamic effects on the track of wheelflats on railway vehicles. J. Mech. Eng. Sci. 21(4), 287–297 (1979)

    Article  Google Scholar 

  26. Nielsen, J.C.O., Oscarsson, J.: Simulation of dynamic train-track interaction with state-dependent track properties. J. Sound Vib. 275, 515–532 (2004)

    Article  Google Scholar 

  27. Patil, S.: Response of infinite railroad track to vibrating mass. J. Eng. Mech. 114(4), 688–703 (1988)

    Article  MathSciNet  Google Scholar 

  28. Pombo, J., Ambrosio, J.: Application of a wheel-rail contact model to railway dynamics in small radius curved tracks. Multibody Syst. Dyn. 19, 91–114 (2008)

    Article  MATH  Google Scholar 

  29. Popp, K., Kruse, H., Kaiser, I.: Vehicle-track dynamics in the mid-frequency range. Veh. Syst. Dyn. 31(5–6), 423–464 (1999)

    Article  Google Scholar 

  30. Roda Buch, A.: Modelo dinámico de la interaccion vía-vehículo basado en subes tructuración. Ph.D. Thesis, Universidad Politécnica de Valencia (2006)

  31. Rucka, M., Wilde, K.: Application of continuous wavelet transform in vibration based damage detection method for beams and plates. J. Sound Vib. 297, 536–550 (2006)

    Article  Google Scholar 

  32. Saito, H., Teresawa, T.: Steady-state vibrations of a beam on a Pasternak foundation for moving loads. J. Appl. Mech. 47, 879–883 (1980)

    Article  MATH  Google Scholar 

  33. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Shabana, A.A., Hussien, H.A., Escalona, J.L.: Application of the absolute nodal coordinate formulation to large rotation and large deformation problems. J. Mech. Des. 120(2), 188–195 (1998)

    Article  Google Scholar 

  35. Shabana, A.A.: Computational Dynamics, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  36. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  37. Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. Taylor and Francis (CRC), Boca Raton (2008)

    MATH  Google Scholar 

  38. Shabana, A.A., Chamorro, R., Rathod, C.: A multibody system approach for finite element modeling of rail flexibility in railroad vehicle applications. J. Multibody Dyn. Proc. IMechE Part K 222, 1–15 (2008)

    Google Scholar 

  39. Shamalta, M., Metrikine, A.V.: Analytical study of the dynamic response of an embedded railway track to a moving load. Arch. Appl. Mech. 73, 131–146 (2003)

    Article  MATH  Google Scholar 

  40. Sun, L.: Dynamic displacement response of beam-type structures to moving line loads. Int. J. Solids Struct. 38, 8869–8878 (2001)

    Article  MATH  Google Scholar 

  41. Vostroukhov, A.V., Metrikine, A.V.: Periodically supported beam on a visco-elastic layer as a model for dynamic analysis of a high-speed railway track. Int. J. Solids Struct. 40, 5723–5752 (2003)

    Article  MATH  Google Scholar 

  42. Yoo, W., Haug, E.: Dynamics of flexible mechanical systems using vibration and static correction modes. J. Mech. Transm. Autom. Des. 108, 315–322 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Chamorro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamorro, R., Escalona, J.L. & González, M. An approach for modeling long flexible bodies with application to railroad dynamics. Multibody Syst Dyn 26, 135–152 (2011). https://doi.org/10.1007/s11044-011-9255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9255-x

Keywords

Navigation