Skip to main content
Log in

Lower limb contribution in kayak performance: modelling, simulation and analysis

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript


Lower limb contribution in flatwater kayaking is difficult to quantify experimentally because lower-limbs and pelvis are hidden in the kayak. A computer simulation model was developed to assess the lower limb contribution to kayak performance. Three simulated movements were compared in terms of paddle tip velocity, force impulse, and mechanical work. The pelvis motion increased the paddle tip velocity by 0.15 m s−1 at the stroke beginning and 0.34 m s−1 afterward. The propulsive impulse was also modified by pelvis rotation with a 3.5 N s increase per stroke. For a set performance, the co-ordination involving the lower limbs decreased the mechanical work by 20 J. The above results were obtained by modelling the Ergometer-Athlete-Paddle {EAP} system using 18 bodies and 31 degrees of freedom. The motion capture data were transformed in generalized coordinate time histories by solving an inverse kinematics problem with optimization in order to assess both lower limb and upper limb positions and produce a cyclic motion. Then the {EAP} was simulated based on Lagrangian dynamics with Lagrange multipliers to introduce the paddle forces. Finally, the joint torques were calculated by solving an inverse dynamics problem with optimization in order to ensure a good distribution of lower limbs actuating torques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Kendal, S., Sanders, R.: The technique of elite flatwater kayak paddlers using the wing paddle. Int. J. Sport Biomech. 8, 233–250 (1992)

    Google Scholar 

  2. Mann, R., Kearney, J.: A biomechanical analysis of the Olympic-style flatwater kayak stroke. Med. Sci. Sports Exerc. 12, 183–188 (1980)

    Google Scholar 

  3. Sanders, R., Kendal, S.: Quantifying lift and drag forces in flatwater kayaking. In: Rodano, R., Ferrigno, G., Santambrogio, G.C. (eds.) Proceedings of the Xth International Symposium on Biomechanics in Sport (1992)

  4. Begon, M., Colloud, F.: A kayak ergometer using a sliding trolley to reproduce accurate on-water mechanical conditions. J. Biomech. 40, S439 (2007)

    Article  Google Scholar 

  5. Begon, M., Colloud, F., Lacouture, P.: Measurement of contact forces on a kayak ergometer with a sliding footrest-seat complex. Sports Eng. 11, 67–73 (2009)

    Google Scholar 

  6. Petrone, N., Quaresimin, M., Spina, S.: A load acquisition device for the paddling action on Olympic kayak. Exp. Mech., Advances in Design, Testing and Analysis (Proc. of XI ICEM) - Allison (ed.) Balkema Rotterdam 2, 817–822 (1998)

  7. Begon, M.: 3D analysis and simulation of cyclic movements on a specific kayak ergometer (in French). PhD thesis, University of Poitiers, France (2006)

  8. Van Soest, A.J., Gfohler, M., Casius, L.J.R.: Consequences of ankle joint fixation on FES cycling power output; A simulation study. Med. Sci. Sports Exerc. 37, 797–806 (2005)

    Article  Google Scholar 

  9. Holvoet, P., Lacouture, P., Duboy, J.: Practical use of airborne simulation in a release-regrasp skill on the high bar. J. Appl. Biomech. 18, 332–344 (2002)

    Google Scholar 

  10. Yeadon, M.R., Hiley, M.J.: The mechanics of the backward giant circle on the high bar. Hum. Mov. Sci. 19, 153–173 (2000)

    Article  Google Scholar 

  11. Hiley, M.J., Yeadon, M.R.: The margin for error when releasing the asymmetric bars for dismounts. J. Appl. Biomech. 21, 223–235 (2005)

    Google Scholar 

  12. Leboeuf, F., Bessonnet, G., Seguin, P., Lacouture, P.: Energetic versus sthenic optimality criteria for gymnastic movement synthesis. Multibody Syst. Dyn. 16, 213–236 (2006)

    Article  MATH  Google Scholar 

  13. de Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29, 1223–1230 (1996)

    Article  Google Scholar 

  14. Wieber, P.-B., Billet, F., Boissieux, L., Pissard-Gibollet, R.: The HuMAnS toolbox, a homogeneous framework for motion capture, analysis and simulation. In: Proc. of the Ninth Int. Symp. on the 3D Analysis of Human Movement (2006)

  15. Featherstone, R., Orin, D.: Robot dynamics: equations and algorithms. In: Proc. of the IEEE Int. Conf. on Robotics and Automation 1, pp. 826–834. San Francisco, CA, USA (2000)

  16. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Butterworth-Heinemann, Stoneham (2004)

    Google Scholar 

  17. Szanto, C.: Racing canoing. International Canoe Federation (2004)

  18. Yang, L., Chew, C., Poo, A., Zielinska, T.: Adjustable bipedal gait generation using genetic algorithm optimized Fourier series formulation. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pp. 4435–4440 (2006)

  19. Koopman, B., Grootenboer, H.J., de Jongh, H.J.: An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking. J. Biomech. 28, 1369–1376 (1995)

    Article  Google Scholar 

  20. Maciejewski, A., Klein, C.: Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. J. Robot. Syst. 5, 527–552 (1988)

    Article  Google Scholar 

  21. Baerlocher, P.: Inverse kinematics techniques of the interactive posture control of articulated figures. Ph.D. thesis, Lausanne, EPFL (2001)

  22. Fournier, A.: Generation of movements in robotics; application of generalized inverse and pseudoinverse matrices (in French). PhD thesis, Montpelier, France (1980)

  23. Hindmarsh, A.C.: Chapter ODEPACK - A systematized collection of ODE solvers in Scientific Computing. Stepleman, R.S. et al. (eds.), pp. 55–64 (1983)

  24. Purkiss, S.B.A., Robertson, D.G.E.: Methods for calculating internal mechanical work: comparison using elite runners. Gait Posture 18, 143–149 (2003)

    Article  Google Scholar 

  25. Leboeuf, F., Lacouture, P.: Construction et illustration des différentes formulations biomécaniques du coût énergétique d’un geste sportif. Sci. Mot. 63, 37–52 (2008)

    Article  Google Scholar 

  26. Ashby, B., Delp, S.: Optimal control simulations reveal mechanisms by which arm movement improves standing long jump performance. J. Biomech. 39, 1726–1734 (2006)

    Article  Google Scholar 

  27. Cheng, K., Hubbart, M.: Role of arms in somersaulting from compliant surfaces; A simulation study of springboard standing dives. Hum. Mov. Sci. 27, 80–95 (2008)

    Article  Google Scholar 

  28. Ashby, B.M., Heegaard, J.H.: Role of arm motion in the standing long jump. J. Biomech. 35, 1631–1637 (2002)

    Article  Google Scholar 

  29. Yeadon, M.R., Atha, J., Hales, F.D.: The simulation of aerial movement–iv, a computer simulation model. J. Biomech. 23, 85–89 (1990)

    Article  Google Scholar 

  30. Yeadon, M.R., Mikulcik, E.C.: The control of non-twisting somersaults using configuration changes. J. Biomech. 29, 1341–1348 (1996)

    Article  Google Scholar 

  31. Härtel, T., Hildebrand, F., Knoll, K.: Methods of simulation and manipulation for the evaluation of figure skating jumps. In: Morritz, E.F., Haake, S. (eds.) The Engineering of Sport 6, Vol. 2 Developments for Disciplines, pp. 179–184. Springer, New York (2006)

    Google Scholar 

  32. Begon, M., Mourasse, O., Lacouture, P.: A method of providing accurate velocity feedback of performance on an instrumented kayak ergometer. Sports Eng. 11, 57–65 (2009)

    Article  Google Scholar 

  33. Begon, M., Wieber, P.-B., Yeadon, M.R.: Kinematics estimation of straddled movements on high bar from a limited number of skin markers using a chain model. J. Biomech. 41, 581–586 (2008)

    Article  Google Scholar 

  34. Saidouni, T., Bessonnet, G.: Generating globally optimised sagittal gait cycles of a biped robot. Robotica 21, 199–210 (2003)

    Article  Google Scholar 

  35. Bessonnet, G., Seguin, P., Sardain, P.: A parametric optimization approach to walking pattern synthesis. Int. J. Robot. Res. 24, 523–536 (2005)

    Article  Google Scholar 

  36. Kyröläinen, H., Smith, R.: Mechanical power output and muscle activities during maximal rowing with different stroke rates. J. Hum. Mov. Stud. 36, 75–94 (1999)

    Google Scholar 

  37. Steinacker, J.M., Lormes, W., Lehmann, M., Altenburg, D.: Training of rowers before world championships. Med. Sci. Sports Exerc. 30, 1158–1163 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mickaël Begon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begon, M., Colloud, F. & Sardain, P. Lower limb contribution in kayak performance: modelling, simulation and analysis. Multibody Syst Dyn 23, 387–400 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: