Skip to main content
Log in

An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Dynamic analysis of many mechanical systems often involves contacts among rigid bodies. When calculating the contact force with a compliant contact force model, a penetration depth and a contact reference frame (a contact point and normal and tangent directions) should be determined from the geometrical information of the rigid body surfaces. In order to improve the speed and robustness of the contact analysis, this paper proposes a contact search algorithm for surfaces composed of triangles. This algorithm is divided into two parts, the pre-search and the detailed search. In the pre-search, a bounding box tree and an overlap test are used to find intersecting triangle pairs, and triangle connectivity information is used to identify and separate multiple contact regions. Then an efficient and robust detailed search algorithm is proposed, where the penetration depth and contact reference frame are determined from the results of the pre-search. Finally, the contact force for each contact region is calculated from a modified compliant contact force model. Numerical examples are also presented to illustrate the accuracy and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  2. Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 156–171 (1882)

    Google Scholar 

  3. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. ASME J. Appl. Mech. 42, 440–445 (1975)

    Google Scholar 

  4. Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22(3), 213–224 (1987)

    Article  Google Scholar 

  5. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. ASME J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  6. Lankarani, H.M., Nikravesh, P.E.: Canonical impulse-momentum equations for impact analysis of multibody system. ASME J. Mech. Des. 180, 180–186 (1992)

    Article  Google Scholar 

  7. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. J. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  8. Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16, 263–290 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. van den Bergen, G.: Collision Detection in Interactive 3D Environments. Morgan Kaufmann, San Mateo (2003)

    Google Scholar 

  10. Arvo, J., Kirk, D.: A survey of ray tracing acceleration techniques. In: An Introduction to Ray Tracing. Morgan Kaufmann, San Francisco, pp. 201–262 (1989)

    Google Scholar 

  11. Lin, M.C., Manocha, D.: Collision and Proximity Queries. Handbook of Discrete and Computational Geometry, 2nd edn. Chapman & Hall/CRC, Lonfon/Boca Raton, pp. 787–808 (2004)

    Google Scholar 

  12. Ericson, C.: Real-Time Collision Detection. Morgan Kaufmann, San Mateo (2004)

    Google Scholar 

  13. Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F., Magnenat-Thalmann, N., Strasser, W., Volino, P.: Collision detection for deformable objects. Comput. Graph. Forum 24(1), 61–81 (2005)

    Article  Google Scholar 

  14. van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2(4), 1–14 (1997)

    MATH  Google Scholar 

  15. Gottschalk, S.: Separating axis theorem. Technical Report TR96-024, Dept. of Computer Science, UNC Chapel Hill (1996)

  16. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection, In: Proc. of ACM Siggraph’96, pp. 171–180 (1996)

  17. Gottschalk, S., Lin, M.C., Manocha, D.: RAPID, http://www.cs.unc.edu/~geom/OBB/OBBT.html (1997)

  18. Terdiman, P.: OPCODE, http://www.codercorner.com/Opcode.htm (2003)

  19. Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., Gross, M.: Optimized spatial hashing for collision detection of deformable objects. In: Proc. of Vision, Modeling, and Visualization, pp. 47–54 (2003)

  20. Cho, H.J., Bae, D.S., Ryu, H.S., Choi, J.H.: An efficient contact search algorithm using the relative coordinate system for multibody system dynamics. In: Proc. of the 1st Asian Conference on Multibody Dynamics, Iwaki, Fukushima, Japan, pp. 520–527 (2002)

  21. Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12, 345–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, L., Kim, Y.J., Varadhan, G., Manocha, D.: Generalized penetration depth computation. Comput. Aided Des. 39, 625–638 (2007)

    Article  Google Scholar 

  23. Dobkin, D., Hershberger, J., Kirkpatrick, D., Suri, S.: Computing the intersection-depth of polyhedra. Algorithmica 9, 518–533 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Heidelberger, B., Teschner, M., Keiser, R., Müller, M., Gross, M.: Consistent penetration depth estimation for deformable collision response. In: Proc. of Vision, Modeling, and Visualization, pp. 339–346 (2004)

  25. Faure, F., Barbier, S., Allard, J., Falipou, F.: Image-based collision detection and response between arbitrary volume objects. In: ACM Siggraph/Eurographics Symposium on Computer Animation (2008)

  26. Govindaraju, N.K., Kabul, I., Lin, M.C., Manocha, D.: Fast continuous collision detection among deformable models using graphics processors. Comput. Graph. 31(1), 5–14 (2007)

    Article  Google Scholar 

  27. Sud, A., Otaduy, M.A., Manocha, D.: DIFI: Fast 3D distance field computation using graphics hardware. Comput. Graph. Forum 23(3), 557–566 (2004)

    Article  Google Scholar 

  28. Careym, G.F.: Computational Grids: Generations, Adaptation, and Solution Strategies. Taylor & Francis, London (1997)

    Google Scholar 

  29. RecurDynTM Help Library: FunctionBay, Inc., http://www.functionbay.co.kr/ (2008)

  30. Adams, M.D.: Manual: MSC Software, http://www.mscsoftware.com/ (2008)

  31. Bae, D.S., Han, J.M., Yoo, H.H.: A generalized recursive formulation for constrained mechanical system dynamics. Mech. Struct. Mach. 27(3), 293–315 (1999)

    Article  Google Scholar 

  32. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mortenson, M.E.: Geometric Modeling, 3rd edn. Industrial Press Inc., New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhwan Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., Ryu, H.S., Kim, C.W. et al. An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst Dyn 23, 99–120 (2010). https://doi.org/10.1007/s11044-009-9173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-009-9173-3

Keywords

Navigation