Skip to main content
Log in

Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this article, we propose methods that increase numerical efficiency of dynamic simulation of spatial multibody systems described in absolute coordinates. The successive coordinate projection method efficiently stabilizes the system constraints in the case when a non-minimal set of orientation coordinates is used to describe the orientation of bodies in space. The new procedure of generation of Newton–Euler equations is shown in detail for systems with the most popular types of joints (prismatic joint, revolute joint, etc.). The proposed algorithms were tested with models of a governor mechanism and Yamaha YZF-R1 motorcycle engine. The simulation results show that the successive coordinate projection method is stable and can be implemented for complex mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U., Chin, H., Petzold, L., Reich, S.: Stabilization of constrained mechanical systems with DAEs and invariant manifolds. Mech. Struct. Mach. 23, 135–157 (1995)

    Article  MathSciNet  Google Scholar 

  2. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blajer, W.: A geometric unification of constrained system dynamics. Multibody Syst. Dyn. 1, 3–21 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7, 265–284 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chin, H.: Stabilization methods for simulations of constrained multibody dynamics. PhD thesis, University of British Columbia, Vancouver, Canada (1995)

  6. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  7. Eich, E.: Projizierende Mehrschrittverfahren zur numerischen Losung der Bewegungsgleichungen technischer Mehrkorpersysteme mit Zwangsbedingungen und Unstetigkeiten. PhD thesis, Institut für Mathematik, Universität Augsburg. “VDI-Fortschrittsberichte”, Reihe 18, Nr. 109,VDI-Verlag, Düsseldorf (1992)

  8. Ferguson, C.R.: Internal Combustion Engines. Applied Thermosciences, 1st edn. Wiley, New York (1986)

    Google Scholar 

  9. Jalon, G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. Springer, Berlin (1994)

    Google Scholar 

  10. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems, vol. I: Basic Methods. Allyn & Bacon, Boston (1989)

    Google Scholar 

  11. Heywood, J.B.: Internal Combustion Engine Fundamentals, p. 435. McGraw-Hill, New York (1988)

    Google Scholar 

  12. Hopf, H.: Systeme symmetrischer Bilinearformen und Euklidische Modelle der projektiven Räume. Naturf. Ges., Zürich, S. 165–177 (1940)

  13. Kasper, R., Vlasenko, D., Sintotskiy, G.: A component oriented approach to multidisciplinary simulation of mechatronic systems. In: Proceedings of the EUROSIM congress on Modelling and Simulation (EUROSIM 2007), Ljubljana, Slovenia, September 9–13, 2007

  14. Schwab, A.L., Meijaard, J.P.: How to draw Euler angles and utilize Euler parameters. In: Proceedings of IDETC/CIE 2006, ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Philadelphia, PA, September 10–13, 2006. ASME, New York (2006). CD-ROM

    Google Scholar 

  15. Schwerin, R.: Multibody System Simulation. Numerical Methods, Algorithms and Software. Springer, Berlin (1999)

    MATH  Google Scholar 

  16. Shabana, A.A.: Computational Dynamics. Wiley, New York (2001)

    Google Scholar 

  17. Stuelpnagel, J.: On the parameterization of the three-dimensional rotation group. SIAM Rev. 6(4), 422–430 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  18. Vlasenko, D., Kasper, R.: A new software approach for the simulation of multibody dynamics. ASME J. Comput. Nonlinear Dyn. 2(3), 274–278 (2007)

    Article  Google Scholar 

  19. Vlasenko, D., Kasper, R.: Implementation of the Symbolic Simplification for the Calculation of Accelerations of Multibodies. In: Proceedings of Industrial Simulation Conference 2008, Lyon, France, June 9–11, 2008

  20. Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  21. Yoon, S., Howe, R.M., Greenwood, D.T.: Geometric elimination of constraint violations in numerical simulation of Lagrangian equations. Trans. ASME, J. Mech. Des. 116, 1058–1064 (1994)

    Article  Google Scholar 

  22. YZF-R1P/YZF-R1PC Service Manual, 1st edn. Yamaha Motor Corporation, USA (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Vlasenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasenko, D., Kasper, R. Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates. Multibody Syst Dyn 22, 297–319 (2009). https://doi.org/10.1007/s11044-009-9167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-009-9167-1

Keywords

Navigation