Skip to main content
Log in

A simple method to impose rotations and concentrated moments on ANC beams

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Recently introduced ANC beam elements furnish a simple formulation that allows to solve nonlinear problems of beams, including those with large displacements and strains, as well as complex nonlinear (inelastic) materials. The success and simplicity of these finite elements is mainly due to the fact that the only nodal degrees of freedom that they employ are displacements, and rotations are thus completely avoided. This in turn makes it very difficult to apply concentrated moments or to impose rotations at specific nodes of a finite element mesh. In this article, we present a simple enhancement to this beam formulation that allows to apply these two types of boundary conditions in a simple manner, making ANC beam elements more versatile for both multibody and structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman, S.S.: The Theory of Rods. Handbuch der Physik, vol. VIa/2. Flügge, S., Truesdell, C. (eds.) Springer, Berlin (1972).

    Google Scholar 

  2. Antman, S.S.: Nonlinear Problems of Elasticity, 1st edn. Springer, Berlin (1995)

    MATH  Google Scholar 

  3. Argyris, J.H.: An excursion into large rotations. Comput. Methods Appl. Mech. Eng. 32, 85–155 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Betsch, P., Stein, E.: An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element. Commun. Numer. Methods Eng. 11, 899–909 (1995)

    Article  MATH  Google Scholar 

  5. Betsch, P., Uhlar, S.: Energy-momentum conserving integration of multibody dynamics. Multibody Syst. Dyn. 17, 243–249 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Betsch, P., Menzel, A., Stein, E.: On the parametrization of finite rotations in computational mechanics. A classification of concepts with application to smooth shells. Comput. Methods Appl. Mech. Eng. 155, 273–305 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bischoff, M., Wall, W.A., Bletzinger, K.-U., Ramm, E.: Models and Finite Elements for Thin-Walled Structures. Encyclopedia of Computational Mechanics, vol. 2 (2004)

  8. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  9. Botasso, C.L., Borri, M.: Integrating finite rotations. Comput. Methods Appl. Mech. Eng. 164, 307–331 (1998)

    Article  Google Scholar 

  10. Büchter, N., Ramm, E.: Shell theory versus degeneration — a comparison in large rotation finite element analysis. Int. J. Numer. Methods Eng. 34, 39–59 (1992)

    Article  MATH  Google Scholar 

  11. Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Methods Eng. 37, 2551–2568 (1994)

    Article  MATH  Google Scholar 

  12. Cardona, A., Geradin, M.: A beam finite element nonlinear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2434 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Crisfield, M.A., Jelenić, G.: Objectivity of strain measures in geometrically exact 3D beam theory and its finite element implementation. Proc. R. Soc. Lond. Ser. A 455, 1125–1147 (1999)

    Article  MATH  Google Scholar 

  14. Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: Goicolea, J.M., Cuadrado, J., García Orden, J.C. (eds.) Multibody Dynamics 2005. ECCOMAS Thematic Conference, Madrid, Spain, 21–24 June 2005

  15. Gurtin, M.E.: An Introduction to Continuum Mechanics. Mathematics in Science and Engineering, vol. 158. Academic Press, New York (1970)

    Google Scholar 

  16. Hughes, T.J.R.: The Finite Element Method. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  17. Ibrahimbegovic, A., Al Mikdad, M.: Finite rotations in dynamics of beams and implicit time-stepping algorithms. Int. J. Numer. Methods Eng. 41(5), 781–814 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jelenić, G., Crisfield, M.A.: Geometrically exact 3d beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171, 141–171 (1999)

    Article  MATH  Google Scholar 

  19. Naghdi, P.M.: The Theory of Plates and Shells, vol. VIa/2. Handbuch der Physik (1972)

  20. Romero, I.: The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput. Mech. 34(2), 121–133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int. J. Numer. Methods Eng. 54(12), 1683–1716 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. ASME J. Mech. Des. 123(4), 606–613 (2001)

    Article  Google Scholar 

  23. Simo, J.C.: A finite strain beam formulation. Part I. The three-dimensional dynamic problem. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)

    Article  MATH  Google Scholar 

  24. Simo, J.C., Kennedy, J.G.: On a stress resultant geometrically exact shell model. V. Nonlinear plasticity: formulation and integration algorithms. Comput. Methods Appl. Mech. Eng. 96(2), 133–171 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  26. Smoleński, W.M.: Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput. Methods Appl. Mech. Eng. 178, 89–113 (1999)

    Article  MATH  Google Scholar 

  27. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)

    Article  MATH  Google Scholar 

  28. Sugiyama, H., Gerstmayr, J., Shabana, A.A.: Deformation modes in the finite element absolute nodal coordinate formulation. J. Sound Vib. 298, 1129–1149 (2006)

    Article  MathSciNet  Google Scholar 

  29. Yacoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. ASME J. Mech. Eng. 123(4), 614–621 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, I., Arribas, J.J. A simple method to impose rotations and concentrated moments on ANC beams. Multibody Syst Dyn 21, 307–323 (2009). https://doi.org/10.1007/s11044-008-9140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-008-9140-4

Keywords

Navigation