Skip to main content
Log in

The generalized momentum approach to the dynamic modeling of a 6-dof parallel manipulator

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Dynamic modeling is of great importance regarding computer simulation and advanced control of parallel manipulators.

Due to their closed-loop structure and kinematic constraints, dynamic modeling of parallel manipulators presents an inherent complexity. Despite the intensive investigation in this topic of robotics, mostly conducted in the last 2 decades, additional research still has to be done in this area.

The dynamic model of a parallel manipulator is usually developed using the Newton–Euler or the Lagrange methods. Nevertheless, additional approaches were also investigated, such as the virtual work, and screw theory based approaches.

In this paper, an approach based on the manipulator generalized momentum is studied. This approach is used to obtain the dynamic model of a six degrees-of-freedom parallel manipulator. The involved computational effort is evaluated and compared with the one involved within the classic Lagrange’s formulation. It is showed the proposed approach presents a much lower computational burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lilly, K.: Efficient Dynamic Simulation of Robotic Mechanisms. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  2. Naudet, J., Lefeber, D., Daerden, F., Terze, Z.: Forward dynamics of open-loop multibody mechanisms using an efficient recursive algorithm based on canonical momenta. Multibody Syst. Dyn. 10, 45–59 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Mata, V., Provenzano, S., Valero, F., Cuadrado, J.I.: Serial-robot dynamics algorithms for moderately large numbers of joints. Mech. Mach. Theory 37, 739–755 (2002)

    Article  MATH  Google Scholar 

  4. Lee, K., Chirikjian, G.S.: A new perspective on O(n) mass-matrix inversion for serial revolute manipulators. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 4722–4726 (2005)

  5. Featherstone, R., Orin, D.: Robot dynamics: equations and algorithms. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 826–834 (2000)

  6. Callegari, M., Palpacelli, M., Principi, M.: Dynamics modelling and control of the 3-RCC translational platform. Mechatronics 16, 589–605 (2006)

    Article  Google Scholar 

  7. Do, W., Yang, D.: Inverse dynamic analysis and simulation of a platform type of robot. J. Robot. Syst. 5, 209–227 (1988)

    Article  MATH  Google Scholar 

  8. Reboulet, C., Berthomieu, T.: Dynamic models of a six degree of freedom parallel manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1153–1157 (1991)

  9. Ji, Z.: Dynamics decomposition for stewart platforms. ASME J. Mech. Des. 116, 67–69 (1994)

    Article  Google Scholar 

  10. Mouly, N.: Développement d’une famille de robots parallèles à motorisation électrique. Thèse de Doctorat. École des Mines de Paris (1993)

  11. Dasgupta, B., Mruthyunjaya, T.S.: A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 34, 711–725 (1998)

    Article  MathSciNet  Google Scholar 

  12. Dasgupta, B., Choudhury, P.: A general strategy based on the Newton–Euler approach for the dynamic formulation of parallel manipulators. Mech. Mach. Theory 34, 801–824 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Khalil, W., Ibrahim, O.: General solution for the dynamic modelling of parallel robots. J. Intell. Robot. Syst. 49, 19–37 (2007)

    Article  Google Scholar 

  14. Riebe, S., Ulbrich, H.: Modelling and online computation of the dynamics of a parallel kinematic with six degrees-of-freedom. Arch. Appl. Mech. 72, 817–829 (2003)

    MATH  Google Scholar 

  15. Khalil, W., Guegan, S.: Inverse and direct dynamic modeling of Gough–Stewart robots. IEEE Trans. Robot. 20, 754–761 (2004)

    Article  Google Scholar 

  16. Guo, H.B., Li, H.R.: Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator. J. Mech. Eng. Sci. 220, 61–72 (2006). Proceedings of the Institution of Mechanical Engineers, Part C

    Google Scholar 

  17. Carvalho, J.M., Ceccarelli, M.: A closed-form formulation for the inverse dynamics of a Cassino Parallel Manipulator. Multibody Syst. Dyn. 5, 185–210 (2001)

    Article  MATH  Google Scholar 

  18. Wang, J., Wu, J., Wang, L., Li, T.: Simplified strategy of the dynamic model of a 6-UPS parallel kinematic machine for real-time control. Mech. Mach. Theory 42, 1119–1140 (2007)

    Article  MATH  Google Scholar 

  19. Nguyen, C., Pooran, F.: Dynamic analysis of a 6 DOF CKCM robot end-effector for dual-arm telerobot systems. Robot. Auton. Syst. 5, 377–394 (1989)

    Article  Google Scholar 

  20. Liu, K., Lewis, F., Lebret, G., Taylor, D.: The singularities and dynamics of a Stewart platform manipulator. J. Intell. Robot. Syst. 8, 287–308 (1993)

    Article  Google Scholar 

  21. Lebret, G., Liu, K., Lewis, F.: Dynamic analysis and control of a Stewart platform manipulator. J. Robot. Syst. 10, 629–655 (1993)

    Article  MATH  Google Scholar 

  22. Geng, Z., Haynes, L.S., Lee, J.D., Carroll, R.L.: On the dynamic model and kinematics analysis of a class of Stewart platforms. Robot. Auton. Syst. 9, 237–254 (1992)

    Article  Google Scholar 

  23. Bhattacharya, S., Nenchev, D.N., Uchiyama, M.: A recursive formula for the inverse of the inertia matrix of a parallel manipulator. Mech. Mach. Theory 33, 957–964 (1998)

    Article  MATH  Google Scholar 

  24. Di Gregório, R., Parenti-Castelli, V.: Dynamics of a class of parallel wrists. J. Mech. Des. 126, 436–441 (2004)

    Google Scholar 

  25. Caccavale, F., Siciliano, B., Villani, L.: The tricept robot: Dynamics and impedance control. IEEE/ASME Trans. Mech. 8, 263–268 (2003)

    Article  Google Scholar 

  26. Abdellatif, H., Heimann, B.: Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism. Mech. Mach. Theory (2008). doi:10.1016/j.mechmachtheory.2008.02.003

    Google Scholar 

  27. Wang, J., Gosselin, C.: A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 2, 317–334 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tsai, L.-W.: Solving the inverse dynamics of a Stewart–Gough manipulator by the principle of virtual work. J. Mech. Des. 122, 3–9 (2000)

    Google Scholar 

  29. Li, Y., Xu, Q.: Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism. Robotica 23, 219–229 (2005)

    Article  Google Scholar 

  30. Staicu, S., Liu, X.-J., Wang, J.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn. 50, 1–12 (2007)

    Article  Google Scholar 

  31. Wang, J., Gosselin, C.: A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 2, 317–334 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, Y., Xu, Q.: Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine. Robot. Comput. Integr. Manuf. (2008). doi:10.1016/j.rcim.2008.05.006

    Google Scholar 

  33. Gallardo, J., Rico, J.M., Frisoli, A., Checcacci, D., Bergamasco, M.: Dynamics of parallel manipulators by means of screw theory. Mech. Mach. Theory 38, 1113–1131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Staicu, S., Zhang, D.: A novel dynamic modelling approach for parallel mechanisms analysis. Robot. Comput. Integr. Manuf. 24, 167–172 (2008)

    Article  Google Scholar 

  35. Merlet, J.-P., Gosselin, C.: Nouvelle architecture pour un manipulateur parallèle à six degrés de liberté. Mech. Mach. Theory 26, 77–90 (1991)

    Article  Google Scholar 

  36. Chablat, D., Wenger, P., Majou, F., Merlet, J.-P.: An interval analysis based study for the design and the comparison of three-degrees-of-freedom parallel kinematic machines. Int. J. Robot. Res. 23, 615–624 (2004)

    Article  Google Scholar 

  37. Merlet, J.-P.: Parallel Robots. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  38. Bruzzone, L., Molfino, R., Zoppi, M.: An impedance-controlled parallel robot for high-speed assembly of white goods. Ind. Robot 32, 226–233 (2005)

    Article  Google Scholar 

  39. Vischer, P., Clavel, R.: Argos: A novel 3-DoF parallel wrist mechanism. Int. J. Robot. Res. 19, 5–11 (2000)

    Article  Google Scholar 

  40. Lopes, A., Almeida, F.: A force—impedance controlled industrial robot using an active robotic auxiliary device. Robot. Comput. Integr. Manuf. 24, 299–309 (2008)

    Article  Google Scholar 

  41. Pernette, E., Henein, S., Magnani, I., Clavel, R.: Design of parallel robots in microrobotics. Robotica 15, 417–420 (2000)

    Article  Google Scholar 

  42. Zhang, D., Gosselin, C.: Kinetostatic analysis and design optimization of the tricept machine tool family. J. Manuf. Sci. Eng. 124, 725–733 (2002)

    Article  Google Scholar 

  43. Glavonjic, M., Milutinovic, D.: Parallel structured milling machines with long X travel. Robot. Comput. Integr. Manuf. 24, 310–320 (2008)

    Article  Google Scholar 

  44. Kim, J., Hwang, J.C., Kim, J.S., Iurascu, C.C., Park, F.C., Cho, Y.M.: Eclipse II: A new parallel mechanism enabling continuous 360-degree spinning plus three-axis translational motions. IEEE Trans. Robot. Autom. 18, 367–373 (2002)

    Article  Google Scholar 

  45. Constantinescu, D., Salcudean, S.E., Croft, E.A.: Haptic rendering of rigid contacts using impulsive and penalty forces. IEEE Trans. Robot. 21, 309–323 (2005)

    Article  Google Scholar 

  46. Najafi, F., Sepehri, N.: A novel hand-controller for remote ultrasound imaging. Mechatronics (2008). doi:10.1016/j.mechatronics.2008.05.013

    Google Scholar 

  47. Lopes, A., Almeida, F.: Manipulability optimization of a parallel structure robotic manipulator. In: Proc of the 2nd Portuguese Conference on Automatic Control, pp. 243–248 (1996)

  48. Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. McGraw-Hill, New York (1996)

    Google Scholar 

  49. Vukobratovic, M., Kircanski, M.: Kinematics and Trajectory Synthesis of Manipulation Robots. Springer, Berlin (1986)

    MATH  Google Scholar 

  50. Torby, B.: Advanced Dynamics for Engineers. CBS College, New York (1984)

    Google Scholar 

  51. Koditschek, D.: Natural motion for robot arms. In: Proceedings of 23rd Conference on Decision and Control, pp. 733–735 (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Mendes Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes Lopes, A., Almeida, F. The generalized momentum approach to the dynamic modeling of a 6-dof parallel manipulator. Multibody Syst Dyn 21, 123–146 (2009). https://doi.org/10.1007/s11044-008-9131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-008-9131-5

Keywords

Navigation