Skip to main content
Log in

Least action principles and their application to constrained and task-level problems in robotics and biomechanics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Least action principles provide an insightful starting point from which problems involving constraints and task-level objectives can be addressed. In this paper, the principle of least action is first treated with regard to holonomic constraints in multibody systems. A variant of this, the principle of least curvature or straightest path, is then investigated in the context of geodesic paths on constrained motion manifolds. Subsequently, task space descriptions are addressed and the operational space approach is interpreted in terms of least action. Task-level control is then applied to the problem of cost minimization. Finally, task-level optimization is formulated with respect to extremizing an objective criterion, where the criterion is interpreted as the action of the system. Examples are presented which illustrate these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34(2), 153–161 (2001)

    Article  Google Scholar 

  2. Bajodah, A.H., Hodges, D.H., Chen, Y.: Inverse dynamics of servo-constraints based on the generalized inverse. Nonlinear Dyn. 39(1–2), 179–196 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  4. Biess, A., Nagurka, M., Flash, T.: Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices. Biol. Cybern. 95(1), 31–53 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blajer, W., Kolodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11(4), 343–364 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)

    MATH  Google Scholar 

  7. Bryson, A.E.: Dynamic Optimization. Addison-Wesley, Reading (1999)

    Google Scholar 

  8. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14, 793–801 (1981)

    Article  Google Scholar 

  9. De Sapio, V., Khatib, O.: Operational space control of multibody systems with explicit holonomic constraints. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, pp. 2961–2967 (2005)

  10. De Sapio, V., Warren, J., Khatib, O., Delp, S.: Simulating the task-level control of human motion: a methodology and framework for implementation. Vis. Comput. 21(5), 289–302 (2005)

    Article  Google Scholar 

  11. De Sapio, V., Khatib, O., Delp, S.: Task-level approaches for the control of constrained multibody systems. Multibody Syst. Dyn. 16(1), 73–102 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. De Sapio, V., Warren, J., Khatib, O.: Predicting reaching postures using a kinematically constrained shoulder model. In: Lenarčič, J., Roth, B. (eds.) Advances in Robot Kinematics, pp. 209–218. Springer, Berlin (2006)

    Chapter  Google Scholar 

  13. Gauss, K.F.: Über ein neues allgemeines Grundgesetz der Mechanik (On a new fundamental law of mechanics). J. Reine Angew. Math. 4, 232–235 (1829)

    Google Scholar 

  14. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, Reading (2002)

    Google Scholar 

  15. Hertz, H.: The Principles of Mechanics Presented in a New Form. Dover, New York (2004)

    Google Scholar 

  16. Holzbaur, K.R.S., Murray, W.M., Delp, S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33(6), 829–840 (2005)

    Article  Google Scholar 

  17. Khatib, O.: A unified approach to motion and force control of robot manipulators: the operational space formulation. Int. J. Robot. Res. 3(1), 43–53 (1987)

    Google Scholar 

  18. Khatib, O.: Inertial properties in robotic manipulation: an object level framework. Int. J. Robot. Res. 14(1), 19–36 (1995)

    Article  Google Scholar 

  19. Lanczos, C.: The Variational Principles of Mechanics, 4th edn. Dover, New York (1986)

    Google Scholar 

  20. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999)

    MATH  Google Scholar 

  21. Optimization Toolbox 3—User’s Guide. The Mathworks (2007)

  22. Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems for Engineers, Physicists, and Mathematicians. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  23. Roberts, S.M., Shipman, J.S.: Two-Point Boundary Value Problems: Shooting Methods. American Elsevier, Oxford (1972)

    MATH  Google Scholar 

  24. Soechting, J.F., Buneo, C.A., Herrmann, U., Flanders, M.: Moving effortlessly in three dimensions: does donders law apply to arm movement? J. Neurosci. 15(9), 6271–6280 (1995)

    Google Scholar 

  25. Stengel, R.F.: Optimal Control and Estimation. Dover, New York (1994)

    MATH  Google Scholar 

  26. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern. 61, 89–101 (1989)

    Article  Google Scholar 

  27. Vujanovic, B.D., Atanackovic, T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  28. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. In: Bourne, J.R. (ed.) Critical Reviews in Biomedical Engineering, pp. 359–411. CRC Press, Boca Raton (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent De Sapio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Sapio, V., Khatib, O. & Delp, S. Least action principles and their application to constrained and task-level problems in robotics and biomechanics. Multibody Syst Dyn 19, 303–322 (2008). https://doi.org/10.1007/s11044-007-9097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9097-8

Keywords

Navigation