Multibody System Dynamics

, Volume 19, Issue 3, pp 303–322 | Cite as

Least action principles and their application to constrained and task-level problems in robotics and biomechanics

  • Vincent De SapioEmail author
  • Oussama Khatib
  • Scott Delp


Least action principles provide an insightful starting point from which problems involving constraints and task-level objectives can be addressed. In this paper, the principle of least action is first treated with regard to holonomic constraints in multibody systems. A variant of this, the principle of least curvature or straightest path, is then investigated in the context of geodesic paths on constrained motion manifolds. Subsequently, task space descriptions are addressed and the operational space approach is interpreted in terms of least action. Task-level control is then applied to the problem of cost minimization. Finally, task-level optimization is formulated with respect to extremizing an objective criterion, where the criterion is interpreted as the action of the system. Examples are presented which illustrate these approaches.


Least action Constraints Task-level control Musculoskeletal system Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34(2), 153–161 (2001) CrossRefGoogle Scholar
  2. 2.
    Bajodah, A.H., Hodges, D.H., Chen, Y.: Inverse dynamics of servo-constraints based on the generalized inverse. Nonlinear Dyn. 39(1–2), 179–196 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Biess, A., Nagurka, M., Flash, T.: Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices. Biol. Cybern. 95(1), 31–53 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Blajer, W., Kolodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11(4), 343–364 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2003) zbMATHGoogle Scholar
  7. 7.
    Bryson, A.E.: Dynamic Optimization. Addison-Wesley, Reading (1999) Google Scholar
  8. 8.
    Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14, 793–801 (1981) CrossRefGoogle Scholar
  9. 9.
    De Sapio, V., Khatib, O.: Operational space control of multibody systems with explicit holonomic constraints. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, pp. 2961–2967 (2005) Google Scholar
  10. 10.
    De Sapio, V., Warren, J., Khatib, O., Delp, S.: Simulating the task-level control of human motion: a methodology and framework for implementation. Vis. Comput. 21(5), 289–302 (2005) CrossRefGoogle Scholar
  11. 11.
    De Sapio, V., Khatib, O., Delp, S.: Task-level approaches for the control of constrained multibody systems. Multibody Syst. Dyn. 16(1), 73–102 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    De Sapio, V., Warren, J., Khatib, O.: Predicting reaching postures using a kinematically constrained shoulder model. In: Lenarčič, J., Roth, B. (eds.) Advances in Robot Kinematics, pp. 209–218. Springer, Berlin (2006) CrossRefGoogle Scholar
  13. 13.
    Gauss, K.F.: Über ein neues allgemeines Grundgesetz der Mechanik (On a new fundamental law of mechanics). J. Reine Angew. Math. 4, 232–235 (1829) Google Scholar
  14. 14.
    Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, Reading (2002) Google Scholar
  15. 15.
    Hertz, H.: The Principles of Mechanics Presented in a New Form. Dover, New York (2004) Google Scholar
  16. 16.
    Holzbaur, K.R.S., Murray, W.M., Delp, S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33(6), 829–840 (2005) CrossRefGoogle Scholar
  17. 17.
    Khatib, O.: A unified approach to motion and force control of robot manipulators: the operational space formulation. Int. J. Robot. Res. 3(1), 43–53 (1987) Google Scholar
  18. 18.
    Khatib, O.: Inertial properties in robotic manipulation: an object level framework. Int. J. Robot. Res. 14(1), 19–36 (1995) CrossRefGoogle Scholar
  19. 19.
    Lanczos, C.: The Variational Principles of Mechanics, 4th edn. Dover, New York (1986) Google Scholar
  20. 20.
    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999) zbMATHGoogle Scholar
  21. 21.
    Optimization Toolbox 3—User’s Guide. The Mathworks (2007) Google Scholar
  22. 22.
    Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems for Engineers, Physicists, and Mathematicians. Oxford University Press, Oxford (2002) zbMATHGoogle Scholar
  23. 23.
    Roberts, S.M., Shipman, J.S.: Two-Point Boundary Value Problems: Shooting Methods. American Elsevier, Oxford (1972) zbMATHGoogle Scholar
  24. 24.
    Soechting, J.F., Buneo, C.A., Herrmann, U., Flanders, M.: Moving effortlessly in three dimensions: does donders law apply to arm movement? J. Neurosci. 15(9), 6271–6280 (1995) Google Scholar
  25. 25.
    Stengel, R.F.: Optimal Control and Estimation. Dover, New York (1994) zbMATHGoogle Scholar
  26. 26.
    Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern. 61, 89–101 (1989) CrossRefGoogle Scholar
  27. 27.
    Vujanovic, B.D., Atanackovic, T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhäuser, Basel (2004) zbMATHGoogle Scholar
  28. 28.
    Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. In: Bourne, J.R. (ed.) Critical Reviews in Biomedical Engineering, pp. 359–411. CRC Press, Boca Raton (1989) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Artificial Intelligence LaboratoryStanford UniversityStanfordUSA
  2. 2.Neuromuscular Biomechanics LaboratoryStanford UniversityStanfordUSA

Personalised recommendations