Skip to main content
Log in

Robot path planning in a constrained workspace by using optimal control techniques

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Robot manipulators are programmable mechanical systems designed to execute a great variety of tasks in a repetitive way. In industrial environment, while productivity increases, cost reduction associated with robotic operation and maintenance can be obtained as a result of decreasing the values of dynamic quantities such as torque and jerk, with respect to a specific task. Furthermore, this procedure allows the execution of various tasks that require maximum system performance. By including obstacle avoidance ability to the robot skills, it is possible to improve the robot versatility, i.e., the robot can be used in a variety of operating conditions. In the present contribution, a study concerning the dynamic characteristics of serial robot manipulators is presented. An optimization strategy that considers the obstacle avoidance ability together with the dynamic performance associated with the movement of the robot is proposed. It results an optimal path planning strategy for a serial manipulator over time varying constraints in the robot workspace. This is achieved by using multicriteria optimization methods and optimal control techniques. Numerical simulation results illustrate the interest of the proposed methodology and the present techniques can be useful for the design of robot controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang, Y.K., Ahuja, N.: Gross motion planning—a survey. ACM Comput. Surv. Arch. 24(3), 219–291 (1992), ISSN: 0360-0300

    Article  Google Scholar 

  2. Saramago, S.F.P., Steffen, V. Jr.: Optimization of the trajectory planning of robot manipulators taking into-account the dynamics of the system. Mech. Mach. Theory 33(7), 883–894 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. dos Santos, R.R., Steffen, V. Jr., Saramago, S.F.P.: Robot path planning: avoiding obstacles. In: 18th International Congress of Mechanical Engineering, Ouro Preto, MG, Brazil (2005)

  4. Constantinescu, D., Croft, E.A.: Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. J. Robotic Syst. 17(5), 233–249 (2000)

    Article  MATH  Google Scholar 

  5. von Stryk, O., Schlemmer, M.: Optimal control of the industrial robot manutec r3: computational optimal control. Int. Ser. Numer. Math. 115, 367–382 (1994)

    MathSciNet  Google Scholar 

  6. Gerke, W.: Collision-free and shortest paths found by dynamic programming. Robotersysteme 1, 43–52 (1985)

    Google Scholar 

  7. Vukobratovic, M., Kircanski, M.: A method for optimal synthesis of manipulation robot trajectories. Trans. ASME 104, 188–193 (1982)

    MATH  Google Scholar 

  8. Pfeifer, F., Johanni, R.: A concept for manipulator trajectory planning. IEEE Trans. Robotics Autom. 3(3), 115–123 (1987)

    Google Scholar 

  9. Singh, S.K., Leu, M.C.: Optimal trajectory generation for robotic manipulators using dynamic programming. J. Dyn. Syst. Meas. Control 109(2), 88–96 (1987)

    Article  MATH  Google Scholar 

  10. Dubowsky, S., Norris, M.A., Shiller, Z.: Time optimal trajectory planning for robotic manipulators with obstacle avoidance: a CAD approach. In: Proc. IEEE Conf. on Robotics and Automation, pp. 1906–1912 (1986)

  11. Shiller, Z., Dubowsky, S.: Robot path planner with obstacles, actuators, gripper and payload constraints. Int. J. Robotics Res. 8(6), 3–18 (1989)

    Article  Google Scholar 

  12. Gilbert, E.G., Johnson, D.W.: Distance functions and their applications to robot path planning in the presence of obstacles. IEEE J. Robotics Autom. 1(1), 21–30 (1985)

    Google Scholar 

  13. Galicki, M.: Optimal planning of a collision-free trajectory of redundant manipulators. Int. J. Robotics Res. 11(6), 549–559 (1992)

    Article  Google Scholar 

  14. Shiller, Z.: Time-energy optimal control of articulated systems with geometric path constraints. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2680–2685 (1994)

  15. Shiller, Z.: Time-energy optimal control of articulated systems with geometric path constraints. ASME J. Dyn. Syst. Meas. Control 118(1), 139–143 (1996)

    Article  MATH  Google Scholar 

  16. Galicki, M.: The planning of robotic optimal motions in the presence of obstacles. Int. J. Robotics Res. 17(3), 248–259 (1998)

    Article  Google Scholar 

  17. Galicki, M.: Real-time trajectory generation for redundant manipulators with path constraints. Int. J. Robotics Res. 20(8), 676–693 (2001)

    Article  MathSciNet  Google Scholar 

  18. Nakamura, Y.: Advanced Robotics: Redundancy and Optimization. Addison–Wesley, Reading (1991)

    Google Scholar 

  19. Fu, K.S., Gonzales, R.C., Lee, C.S.G.: Robotics: Control, Sensing, Vision and Intelligence. McGraw–Hill, New York (1987)

    Google Scholar 

  20. Bryson, A.E. Jr.: Dynamic Optimization. Addison–Wesley, Reading (1999)

    Google Scholar 

  21. Eschenauer, H., Koski, J., Osyczka, A.: Multicriteria Design Optimization. Springer, Berlin (1990)

    MATH  Google Scholar 

  22. Vanderplaats, G.N.: Numerical Optimization Techniques for Engineering Design. 3rd edn. VR&D Inc. (1999)

  23. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  24. Ehrgott, M., Gandibleux, X.: Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  25. Oliveira, L.S.: A contribution to the study of multicriteria optimization methods. Msc. thesis, Uberlândia, MG (2005) (in Portuguese)

  26. Bellman, R., Dreyfus, S.: Applied Dynamic Programming. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  27. Dyer, P., McReynolds, S.R.: The Computation and Theory of Optimal Control. Academic, New York (1970)

    MATH  Google Scholar 

  28. Morin, T.: Computational advances in dynamic programming. In: Puterman (ed.) Dynamic Programming and its Applications. Academic, New York (1979)

    Google Scholar 

  29. Jacobson, D., Mayne, D.: Differential Dynamic Programming. Elsevier, New York (1970)

    MATH  Google Scholar 

  30. Ohno, K.: A new approach to differential dynamic programming for discrete time systems. IEEE Trans. Autom. Control AC 23, 37–47 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yakowitz, S., Rutherford, B.: Computational aspects of discrete-time optimal control. Appl. Math. Comput. 15, 29–45 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhu, Z.Q., Wu, C.P.: Two dynamic programming algorithms for discrete unconstrained optimal control problems. In: International Conference on System Science and Engineering, Beijing, pp. 818–822 (1988)

  33. Cannon, M.D., Cullum, C.D., Polak, E.: Theory of Optimal Control and Mathematical Programming. McGraw–Hill, New York (1970)

    Google Scholar 

  34. Tabak, D., Kuo, B.C.: Optimal Control by Mathematical Programming. Prentice–Hall, Englewood Cliffs (1971)

    Google Scholar 

  35. Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  36. Luenberger, B.G.: Linear and Non-Linear Programming. 2nd edn. Addison–Wesley, Reading (1984)

    Google Scholar 

  37. Vanderplaats, G.N.: DOT—Design Optimization Tools Program. Vanderplaats Research & Development, Inc., Colorado Springs (1995)

    Google Scholar 

  38. Paul, R.P.: Robot Manipulators: Mathematics, Programming, and Control. MIT, Cambridge (1981)

    Google Scholar 

  39. Armstrong, B., Khatib, O., Burdick, J.: The explicit dynamic model and inertial parameters of the PUMA 560 Arm. In: Proceedings of the IEEE Intl. Conf. on Robotics and Automation, pp. 510–518 (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério R. dos Santos.

Additional information

Commemorative contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, R.R., Steffen, V. & Saramago, S.d.F.P. Robot path planning in a constrained workspace by using optimal control techniques. Multibody Syst Dyn 19, 159–177 (2008). https://doi.org/10.1007/s11044-007-9059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9059-1

Keywords

Navigation