Skip to main content
Log in

Dynamics analysis of linear elastic planar mechanisms

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a formulation for the dynamics analysis of an elastic mechanism and integrating a stiff system using efficient numerical methods. Because all the elastic degrees of freedom are included in the vector of generalized variables, the size of the equations is much larger than that obtained using either the assumed mode or the distributed parameter finite element approach. However, the resulting system matrix is sparse and the elastic coordinates are absent from the system matrix, and these are useful properties for subsequent numerical analysis. Techniques for solving a system of linear time-variant equations are applied to the dynamics equations, assuming that the system matrix is slow-changing, and thus, may be approximated by a series of piecewise constant matrices. It is argued that the problem of determining the integration time step is transformed into the problem of computing the exponential of the system matrix with automatic time scaling. A numerical example is given to show that the behavior of the rigid coordinates converges to that of an all-rigid-body model by artificially increasing the Young’s modulus of the elastic components, despite the very-high-frequency vibrations of the elastic coordinates induced by the increment of the stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Dwairi, A.F.: Modeling and dynamic analysis of a planetary mechanism with an elastic belt. Mech. Mach. Theory 39(4), 343–355 (2004)

    Article  MATH  Google Scholar 

  2. Bakr, E.M., Shabana, A.A.: Geometrically nonlinear analysis of multibody systems. Comput. Struct. 23(6), 739–752 (1986)

    Article  MATH  Google Scholar 

  3. Balachandran, B.: Dynamics of an elastic structure excited by harmonic and aharmonic impactor motions. J. Vib. Control 9(3/4), 265–279 (2003)

    Article  MATH  Google Scholar 

  4. Berg, M.C., Amit, N., Powell, J.D.: Multirate digital control system design. IEEE Trans. Autom. Control 33(12) (1988)

  5. Bloch, A.M., Robert, R.R.: Stability and Stiffening of Driven and Free Rotating Beams. American Mathematical Society, Providence, RI (1989)

    Google Scholar 

  6. Book, W.J.: Recursive Lagrangian dynamics of flexible manipulator arms. Int. J. Robot. Res. 3(3), 87–101 (1984)

    Google Scholar 

  7. Chen, C.T.: Linear System Theory and Design. Holt, Rinehart and Winston, New York (1984)

    Google Scholar 

  8. Chen, J.S., Huang, C.L.: Dynamic analysis of flexible slider—crank mechanisms with non-linear finite element method. J. Sound Vib. 246, 389–402 (2001)

    Article  Google Scholar 

  9. Chu, S.C., Pan, K.C.: Dynamic response of a high speed slider—crank mechanism with an elastic connecting rod. ASME J. Eng. Ind. 97, 542–550 (1975)

    Google Scholar 

  10. Chunmei, J., Yang, Q., Ling, F., Ling, Z.: The nonlinear dynamic behavior of an elastic linkage mechanism with clearances. J. Sound Vib. 249(2), 213–226 (2002)

    Article  Google Scholar 

  11. Claus, H., Schiehlen, W.: Dynamic stability and random vibrations of rigid and elastic wheelsets. Nonlinear Dyn. 36(2/4), 299–311 (2004)

    Article  MATH  Google Scholar 

  12. Cleghorn, W.L., Chao, K.C.: Kineto-elastodynamic modeling of mechanisms employing linearly tapered beam finite elements. Mech. Mach. Theory 23(5), 333–342 (1988)

    Article  Google Scholar 

  13. De Luca, A., Faina, R.: Dynamic properties and nonlinear control of robots with mixed rigid/elastic joints. In: Proceedings of the World Automation Congress (IEEE Cat. No.04EX832C), vol. 15(pt. 15, pp. 97–104), Hangzhou, China (2004)

  14. Djerassi, D., Kane, T.R.: Equations of motion governing the deployment of a flexible linkage from a spacecraft. J. Astronaut. Sci. 33(4), 417–428 (1985)

    Google Scholar 

  15. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. Trans. ASME J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006)

    Google Scholar 

  16. Franklin, G.F., Powell, J.D., Workman, M.L.: Digital Control of Dynamic Systems. Addison-Wesley, Reading, MA (1990)

    MATH  Google Scholar 

  17. Gao, X., King, Z., Zhang, Q.: A hybrid beam element for mathematical modeling of high-speed flexible linkages. Mech. Mach. Theory 24(1), 29–36 (1989)

    Article  Google Scholar 

  18. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading, MA (1980)

    MATH  Google Scholar 

  19. Goudas, I., Stavrakis, I., Natsiavas, S.: Dynamics of slider—crank mechanisms with flexible supports and nonideal forcing. Nonlinear Dyn. 35(3), 205–227 (2004)

    Article  MATH  Google Scholar 

  20. Grishanina, T.V.: Dynamics of controlled motion of elastic systems subject to finite displacements and rotations. Mech. Solids 39(6), 132–144 (2004)

    Google Scholar 

  21. Gulyaev, V.I., Ikonnikov, A.N.: Dynamics simulation of crank mechanisms with elastic links. Problemy Prochnosti 5, 105–114 (2002)

    Google Scholar 

  22. Gulyaev, V.I., Zavrazhina, T.V.: Dynamics of a manipulation robot with flexible links and drive mechanisms. Mech. Solids 38(6), 13–22 (2003)

    Google Scholar 

  23. Hac, M.: Dynamics of flexible mechanisms with mutual dependence between rigid motion and longitudinal deformation of links. Mech. Mach. Theory 30(6), 837–847 (1995)

    Article  MathSciNet  Google Scholar 

  24. Haug, E.J., Arora, J.S.: Design sensitivity analysis of elastic mechanical systems. Comput. Methods Appl. Mech. Eng. 15, 35–62 (1978)

    Article  MATH  Google Scholar 

  25. Haug, E.J., Ehle, P.E.: Second order design sensitivity analysis of mechanical system dynamics. Int. J. Numer. Methods Eng. 18(18), 1699–1717 (1982)

    Article  MATH  Google Scholar 

  26. Haug, E.J., Sohoni, V.N., Kim, S.S., Seong, H.G.: Vehicle suspension dynamics optimization. In: Proceedings of the International Conference on Modern Vehicle Design Analysis, London (1983)

  27. Haug, E.J., Wehage, R., Barman, N.C.: Design sensitivity analysis of planar mechanism and machine dynamics. ASME J. Mech. Des. 103, 560–570 (1981)

    Article  Google Scholar 

  28. Haug, E.J., Wehage, R., Mani, N.K.: Design sensitivity analysis of large-scale constrained dynamic mechanical systems. ASME J. Mech. Transm. Autom. Des. 106, 156–162 (1984)

    Google Scholar 

  29. Ider, S.K., Amirouche, F.M.L.: Influence of geometric nonlinearities in the dynamics of flexible treelike structures. AIAA J. Guid. 12(6), 830–837 (1989)

    MATH  MathSciNet  Google Scholar 

  30. Kane, T.R., Ryan, R.R.: Dynamics of a Cantilever beam attached to a moving base. AIAA J. Guid. 10(2), 139–151 (1987)

    Article  Google Scholar 

  31. Kim, S.S.: A recursive formulation for flexible multibody dynamics. Ph.D. Dissertation, Department of Mechanical Engineering, University of Iowa (1988)

  32. Lerbet, J.: Non-linear dynamics of elastic curvilinear systems. A new coordinateless approach. J. Appl. Math. Mech. 69, 917–924 (2005)

    Google Scholar 

  33. Marghitu, D.B., Hurmuzlu, Y.: Nonlinear dynamics of an elastic rod with frictional impact. Nonlinear Dyn. 10(2), 187–201 (1996)

    Article  MathSciNet  Google Scholar 

  34. Meirovitch, L.: Computational Methods in Structure Dynamics. Sijthoff & Noordhoff, The Netherlands, 1980

    Google Scholar 

  35. Meirovitch, L.: Dynamics and Control of Structures. Wiley Interscience, New York, 425pp, (1990)

  36. Meirovitch, L., Stemple, T.: Hybrid equations of motion for flexible multibody systems using quasicoordinates. J. Guid. Control Dyn. 18(4), 678–687 (1995)

    MATH  Google Scholar 

  37. Nagarajan, S., Turcic, D.A.: Lagrangian formulation of the equations of motion for elastic mechanisms with mutual dependence between rigid body and elastic motions. Part I: Element level equations. ASME J. Dyn. Syst. Meas. Control 112, 203–214 (1990)

    Google Scholar 

  38. Nagarajan, S., Turcic, D.A.: Lagrangian formulation of the equations of motion for elastic mechanisms with mutual dependence between rigid body and elastic motions. Part I: System equations. ASME J. Dyn. Syst. Meas. Control 112, 215–224 (1990)

    Article  Google Scholar 

  39. Ogata, K.: Discrete-Time Control Systems. Prentice-Hall, Englewood Cliffs, NJ (1987)

    Google Scholar 

  40. Park, T.W., Haug, E.J.: A hybrid numerical integration method for machine dynamic simulation. ASME J. Mech. Transm. Autom. Des. 108, 211–216 (1986)

    Google Scholar 

  41. Romdhane, L., Dhuibi, H., Bel haudj Salah, H.: Dynamic analysis of planar elastic mechanisms using the dyad method. Proc. Inst. Mech. Eng. Part K (J. Multi-Body Dyn.) 217(K1), 1–14 (2003)

    Google Scholar 

  42. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum, New York (1977)

    MATH  Google Scholar 

  43. Sadler, J.P., Sandor, G.N.: A lumped parameter approach to vibration and stress analysis of elastic linkages. J. Eng. Ind. 95, 549–557 (1973)

    Google Scholar 

  44. Schiehlen, W., Guse, N., Seifried, R.: Multibody dynamics in computational mechanics and engineering applications. Comput. Methods Appl. Mech. Eng. 195(41/43), 5509–5522 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shabana, A., Wehage, R.A.: Variable degree-of-freedom component mode analysis of inertia variant flexible mechanical systems. ASME J. Mech. Transm. Autom. Des. 105, 371–378 (1983)

    Google Scholar 

  46. Shabana, A., Wehage, R.A.: Spatial transient analysis of inertia-variant flexible mechanical systems. ASME J. Mech. Transm. Autom. Des. 106, 172–178 (1984)

    Google Scholar 

  47. Singh, S.N., Schy, A.A.: Control of elastic robotic systems by nonlinear inversion and modal damping. ASME J. Dyn. Syst. Meas. Control 108, 180–189 (1986)

    MATH  Google Scholar 

  48. Song, J.O., Haug, E.J.: Dynamic analysis of planar flexible mechanisms. Comput. Methods Appl. Mech. Eng. 24, 359–381 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  49. Souh, B.Y.: A recursive dynamic formulation for flexible mechanisms. Ph.D. Dissertation, Department of Mechanical Engineering, University of Iowa (1990)

  50. Tabor, M.: Chaos and Integrability in Nonlinear Dynamics. Wiley, New York (1989)

    MATH  Google Scholar 

  51. Thompson, B.S., Sung, C.K.: A variational formulation for the nonlinear finite element analysis of flexible linkages: theory, implementation, and experimental results. ASME J. Mech. Transm. Autom. Des. 106, 482–488 (1984)

    Google Scholar 

  52. Turcic, D.A., Midha, A.: Generalized equations of motion for the dynamic analysis of elastic mechanism systems. ASME J. Dyn. Syst. Meas. Control 106, 243–248 (1984)

    MATH  Google Scholar 

  53. Turcic, D.A., Midha, A.: Dynamic analysis of elastic mechanism systems. Part I: Applications. ASME J. Dyn. Syst. Meas. Control 106, 249–254 (1984)

    Article  MATH  Google Scholar 

  54. Turhan, O.: Dynamic stability of four-bar and slider—crank mechanisms with elastic coupler. Mech. Mach. Theory 30(6), 871–882 (1995)

    Article  Google Scholar 

  55. Usoro, P.B., Nadira, R., Mahil, S.S.: A finite element/lagrange approach to modeling lightweight flexible manipulators. ASME J. Dyn. Syst. Meas. Control 108, 198–204 (1986)

    MATH  Google Scholar 

  56. Van Loan, C.F.: Computing integrals involving the matrix exponential. IEEE Trans. Autom. Control AC-23(3), (1978)

  57. Wang, Y.: Dynamics of an elastic four bar linkage mechanism with geometric nonlinearities. Nonlinear Dyn. 14(4), 357–375 (1997)

    Article  MATH  Google Scholar 

  58. Wang, J., Liu, H., Yuan, D.: An efficient solution of the elastic mechanism non-linear differential equation of motion. Proc. ASME Des. Eng. Tech. Conf. 5A, 177–182 (2002)

    Google Scholar 

  59. Wayou, A.Y., Tchoukuegno, R., Woato, P.: Non-linear dynamics of an elastic beam under moving loads. J. Sound Vib. 273(4/5), 1101–1108 (2004)

    Google Scholar 

  60. Wu, S.C., Haug, E.J., Kim, S.S.: A variational approach to dynamics of flexible multibody systems. Mech. Struct. Mach. 17(1), 3–32 (1989)

    MathSciNet  Google Scholar 

  61. Zavrazhina, T.V.: Dynamics of robot manipulator with elastically flexible links and drive mechanisms. J. Autom. Inf. Sci. 37(2), 55–65 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingzhou Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JF., Yang, J. & Abdel-Malek, K. Dynamics analysis of linear elastic planar mechanisms. Multibody Syst Dyn 17, 1–25 (2007). https://doi.org/10.1007/s11044-006-9031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-006-9031-5

Keywords

Navigation