Skip to main content
Log in

Optimal terrain-following for towed-aerial-cable sensors

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Towed-aerial cable systems are often used for towing decoys from aircraft and for collecting electromagnetic data from low altitudes. Airborne cable systems are typically controlled by maneuvering the aircraft, which can limit the safe altitude of the towed-sensor package. In this paper, a real-time optimal control strategy for controlling a towed-cable system is proposed that uses cable winch control to control the altitude of the towed-body. The controller is based on a receding horizon control approach, where the aircraft senses the terrain profile ahead of the towed-body with a relatively short time horizon. This information is sent to the controller, which updates the cable winch reel acceleration to safely avoid colliding with the terrain, while keeping the towed-sensor close to the desired altitude for obtaining good measurements. The controller is developed for a simplified system model and implemented in a multibody cable system model that incorporates cable flexibility and elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jun, Y.-W., Hall, K.R., Bennett, A.G., Bridges, P.D.: Optimal guidance for airborne cable pickup system. AIAA Paper 84–1893, August (1984)

  2. O’Donnell, J.: Air Pick-Up. EnRoute 9(1) (2000), http://www.postalmuseum.si.edu/resources/6a2w_airpickup.html (accessed Nov. 20, 2006)

  3. Russell, J.J., Anderson, W.J.: Equilibrium and stability of a circularly towed cable subject to aerodynamic drag. J. Aircr. 14(7), 680–686 (1977)

    Google Scholar 

  4. Clifton, J.M., Schmidt, L.V., Stuart, T.D.: Dynamic modeling of a trailing wire towed by an orbiting aircraft. J. Guid. Control Dyn. 18(4), 875–881 (1995)

    Google Scholar 

  5. Williams, P., Trivailo, P.: Cable deployment control for towed aerial-cable payload pick-up and delivery system. In: Puri, V., Filippidis, D., Retter, P., Kelly, J. (eds.) Proceedings of the Land Warfare Conference, pp. 313–329. Defence Science & Technology Organisation, Melbourne, Australia (2004)

  6. Quisenberry, J.E., Arena, A.S.: Dynamic simulation of low altitude aerial tow system. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, AIAA Paper 4813 (2004)

  7. Henderson, J.F., Potjewyd, J., Ireland, B.: The dynamics of an airborne towed target system with active control. In: Proceedings of the Institution of Mechanical Engineers 213(5), 305–319 (1999)

  8. Cochran, J.E., Innocenti, M., No., T.S., Thukral, A.: Dynamics and control of maneuverable towed flight vehicles. J. Guid. Control Dyn. 15(5), 1245–1252 (1992)

    Google Scholar 

  9. Bourmistrov, A.S., Hill, R.D., Riseborough, P.: Nonlinear control law for aerial towed target. J. Guid. Control Dyn. 18(6), 1232–1238 (1995)

    Google Scholar 

  10. Quisenberry, J.E., Arena, A.S.: Dynamic simulation of low altitude aerial tow systems. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, RI, August, AIAA Paper 4813 (2004)

  11. Kerins, W.J.: Analysis of towed decoys. IEEE Trans. Aerosp. Electron. Syst. 29(4), 1222–1227 (1993)

    Article  Google Scholar 

  12. Trivailo, P., Blanksby, C., Sgarioto, D., Williams, P., Smart, R.: Defence applications for cable systems deployed from aerial and naval platforms. In: Puri, V., Filippidis, D., Quinn, S., Kelly, J. (eds.) Proceedings of the Land Warfare Conference, pp. 285–294. Defence Science & Technology Organisation, Adelaide, Australia (2003)

  13. Lemon, S.G.: Towed-array history, 1917–2003. IEEE J. Ocean. Eng. 29(2), 365–373 (2004)

    Article  Google Scholar 

  14. Hover, F.S.: Experiments in dynamics positioning of a towed pipe. IEEE III, 484–490 (1993)

    Google Scholar 

  15. Trivailo, P., Sgarioto, D., Blanksby, C.: Optimal control of aerial tethers for payload rendezvous. In: The 5th Asian Control Conference, Melbourne, Australia, July 20–23 (2004)

  16. Williams, P., Sgarioto, D., Trivailo, P.: Optimal control of an aircraft-towed flexible cable system. J. Guid. Control Dyn. 29(2), 401–410 (2006)

    Google Scholar 

  17. Murray, R. M.: Trajectory generation for a towed cable system using differential flatness, pp. 395–400. In: IFAC World Congress, San Francisco, July (1996)

  18. Hover, F.S.: Inversion of a distributed system for open-loop trajectory following. Int. J. Control 60(5), 671–686 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Williams, P., Sgarioto, D., Trivailo, P.: Three-dimensional path planning for an aerial-towed cable system. In: Proceedings of the Eleventh Australian International Aerospace Congress, Melbourne, Australia, March (2005)

  20. Williams, P., Sgarioto, D., Trivailo, P.: Constrained path-planning for an aerial-towed cable system. J. Aerosp. Sci. Technol., submitted for publication [see also Paper 3.01.03 presented at the. First European Conference for Aero-Space Sciences (EUCASS), July 4–7, 2005, Moscow] (2005)

  21. Williams, P., Sgarioto, D., Trivailo, P.: Motion planning for an aerial-towed cable system. In: AIAA Guidance, Navigation and Control Conference, San Francisco, CA, 15–18 August, AIAA 6267 (2005)

  22. Palacky, G.J.: Use of airborne electromagnetic methods for resource mapping. Adv. Space Res. 13(11), (11)5–(11)14 (1993)

    Article  Google Scholar 

  23. Worrall, L., Munday, T.J., Green, A.A.: Airborne electromagnetics – providing new perspectives on geomorphic process and landscape development in Regolith-dominated terrains. Phys. Chem. Earth (A) 24(10), 855–860 (1999)

    Article  Google Scholar 

  24. Huang, H., Won, I.J.: Identification of mineral deposits using airborne electromagnetic spectra. Expanded Abstr. Soc. Explor. Geophys. 21, 5–8 (2002)

    Article  Google Scholar 

  25. Kaieda, H., Kusunoki, K., Ito, H., Mogi, T., Tanaka, Y., Fujimitsu, Y., Igarashi, T.: Development of an integrated airborne survey. Expanded Abstr. Soc. Explor. Geophys. 23, 833–836 (2004)

    Article  Google Scholar 

  26. Won, I.J., Keiswetter, D.A., Bell, T.H.: Electromagnetic induction spectroscopy for clearing landmines. IEEE Trans. Geosci. Remote Sens. 39(4), 703–709 (2001)

    Article  Google Scholar 

  27. Sgarioto, D., Williams, P., Trivailo, P.: On improving the accuracy of simple aerial towed-cable system models. In: The 7th Biennial Engineering Mathematics and Applications Conference, Melbourne, Australia, September 25–28 (2005)

  28. Hover, F.S., Yoerger, D.R.: Identification of low-order dynamic models for deeply towed underwater vehicle systems. Int. J. Offshore Polar Eng. 2(1), 38–45 (1992)

    Google Scholar 

  29. Schram, J.W., Reyle, S.P.: A three-dimensional dynamic analysis of a towed system. J. Hydronaut. 2(4), 213–220 (1968)

    Google Scholar 

  30. Huffman, R.R., Genin, J.: The dynamical behaviour of a flexible cable in a uniform flow field. Aeronaut. Q. 23, May 183–195 (1971)

    Google Scholar 

  31. Crist, S.A.: Analysis of the motion of a long wire towed from an orbiting aircraft. Shock Vib. Bull. 41(6), 61–73 (1970)

    Google Scholar 

  32. Winget, J.M., Huston, R.L.: Cable dynamics – a finite segment approach. Comput. Struct. 6, 475–480 (1976)

    Article  Google Scholar 

  33. Kamman, J.W., Huston, R.L.: Modeling of variable length towed and tethered cable systems. J. Guid. Control Dyn. 22(4), 602–608 (1999)

    Google Scholar 

  34. Choo, Y.-I., Casarella, M.J.: A survey of analytical methods for dynamic simulation of cable-body systems. J. Hydronaut. 7(4), 137–144 (1973)

    Article  Google Scholar 

  35. Buckham, B.J., Nahon, M.: Formulation and validation of a lumped mass model for low-tension ROV tethers. Int. J. Offshore Polar Eng. 11(4), 282–289 (2001)

    Google Scholar 

  36. Williams, P., Lapthorne, P., Trivailo, P.: Circularly-towed lumped mass cable model validation from experimental data. In: AIAA Modeling and Simulation Conference, Keystone, CO, 21–24 August AIAA Paper 6817 (2006)

  37. Hoerner, S.F.: Fluid-dynamic drag. Bricktown, N.J., United States (1965)

  38. Dunbar, W.B., Milam, M.B., Franz, R., Murray, R.M.: Model predictive control of a thrust-vectored flight control experiment. In: 15th IFAC World Congress on Automatic Control, Barcelona, Spain (2002)

  39. Franz, R., Milam, M., Hauser, J.: Applied receding horizon control of the Caltech ducted fan. In: Proceedings of the American Control Conference, Anchorage, AK (2002)

  40. Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ross, I.M., Fahroo, F.: Legendre pseudospectral approximations of optimal control problems. In: Lecture Notes in Control and Information Sciences, 295, 327–342 (2003)

  42. Yan, H., Ross, I.M., Alfriend, K.T.: Time-optimal magnetic attitude control toward real-time application. In: 15th AAS/AIAA Space Flight Mechanics Conference, Copper Mountain, CO, January, Paper AAS 05–233 (2005)

  43. Williams, P., Trivailo, P.: Optimal motion planning and tracking control for a flexible manipulator. In: 56th International Astronautical Congress, Fukuoka, Japan, October 17–21, IAC-05-C1.P.14 (2005)

  44. Yan, H., Lee, D.-J., Ross, I.M., Alfriend, K.T.: Real-time outer and inner loop optimal control using DIDO. In: AAS/AIAA Astrodynamics Specialists Conference, August, Paper AAS 05-353 (2005)

  45. Williams, P.: Real-time computation of optimal trajectories for tethered satellite systems. In: AAS/AIAA Astrodynamics Specialist Conference, August 7–11, Embassy Suites Hotel, Lake Tahoe Resort, Paper AAS 05-320 (2005)

  46. Williams, P.: Application of pseudospectral methods for receding horizon control. J. Guid. Control Dyn. 27(2), 310–314 (2004)

    Google Scholar 

  47. Williams, P.: A Gauss–Lobatto quadrature approach for solving optimal control problems. In: The 7th Biennial Engineering Mathematics and Applications Conference, Melbourne, Australia, September 25–28 (2005)

  48. Williams, P., Trivailo, P.: Optimal parameter estimation of dynamical systems using direct transcription methods. Inverse Probl. Sci. Eng. 13(4), 377–409 (2005)

    Article  MathSciNet  Google Scholar 

  49. Benson, D.: A Gauss pseudospectral transcription for optimal control. PhD dissertation. Massachusetts Institute of Technology, Cambridge, MA, November (2004)

  50. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optimiz. 12(4), 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P. Optimal terrain-following for towed-aerial-cable sensors. Multibody Syst Dyn 16, 351–374 (2006). https://doi.org/10.1007/s11044-006-9030-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-006-9030-6

Keywords

Navigation