Skip to main content
Log in

Thermomechanical interactions in nonlocal thermoelastic medium with double porosity structure

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The main objective of this work is to create a new thermoelastic model for hyperbolic thermoelasticity in the context of double porosity structure based on nonlocal elasticity theory and the dual-phase-lag model. Nonlocal elasticity theory is used to construct new constitutive relations and equations. In a homogeneous, isotropic thermoelastic material, thermomechanical interactions are studied using normal mode analysis. A time-dependent thermal shock is applied on the boundary surface. This study also produces a few unique situations, which are compared with previous results of other researchers. The normal and tangential stresses, temperature, displacement components, change in void volume fractions, and equilibrated stress vectors concerning distances and time intervals are all calculated numerically. The physical quantities mentioned above are also visually displayed for various thermoelastic models to compare and illustrate the theoretical results. A comparative analysis and graphical presentation of the effects of nonlocal parameters and porosity on various physical characteristics have been performed. The figures show that most of the physical variables decrease with the increase in distance and show oscillatory behavior with the increase in time. The behavior of the void volume fraction field of the first kind is opposite to the behavior of the void volume fraction field of the second kind with the increase in distance. It is also noticed that the behavior of equilibrated stress of the first kind is opposite to the behavior of the second kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No datasets were generated or analysed during the current study.

References

Download references

Acknowledgements

We thank the reviewers for their time spent on reviewing our manuscript, careful reading and insightful comments and suggestions that lead to improve the quality of this manuscript.

Funding

Chandra Sekhar Mahato is thankful to the University Grants Commission, New Delhi, India for providing the NET-JRF Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

First and second authors wrote the main manuscript text and first author prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Siddhartha Biswas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} &N_{1}=\frac{p_{30}+p_{56}}{p_{17}}, N_{2}=\frac{p_{31}+p_{57}+p_{71}+s_{10}+s_{24}}{p_{17}}, N_{3}=\frac{p_{32}+p_{58}+p_{72}+s_{11}+s_{25}}{p_{17}}, \\ &N_{4}=\frac{p_{33}+p_{59}+p_{73}+s_{12}+s_{26}}{p_{17}}, N_{5}=\frac{p_{34}+p_{74}+s_{13}+s_{27}}{p_{17}},\\ &s_{1}=a_{12}a_{17}-a_{20}, s_{2}=a_{12}p_{5}-p_{9}-a_{16}p_{11}-a_{11}a_{20}, s_{3}=a_{12}p_{6}-a_{11}p_{9}+a_{16}p_{12}, \\ &s_{4}=a_{15}a_{17}-a_{19}, s_{5}=a_{15}p_{5}-p_{35}-a_{11}a_{19}-a_{16}p_{43}, s_{6}=a_{15}p_{6}-a_{11}p_{35}+a_{16}p_{37}, \\ &s_{7}=a_{15}a_{20}-a_{12}a_{19}, s_{8}=a_{12}a_{17}a_{24}-a_{15}a_{23}+p_{60}, s_{9}=a_{15}p_{12}-a_{12}p_{37}+a_{11}p_{60}, \\ &s_{10}=a_{4}s_{4}-a_{4}a_{7}s_{1}, s_{11}=a_{4}s_{5}+a_{4}a_{6}s_{4}-a_{4}a_{7}s_{2}-a_{4}a_{8}s_{7}+a_{4}a_{10}s_{8}, \\ &s_{12}=a_{4}s_{6}+a_{4}a_{6}s_{5}-a_{4}a_{7}s_{3}-a_{4}a_{8}p_{68}+a_{4}a_{10}s_{10}, s_{13}=a_{4}a_{6}s_{6}, s_{14}=-a_{23}-a_{13}p_{11}, \\ &s_{15}=a_{12}p_{7}+p_{10}-a_{11}a_{23}+a_{13}p_{12}-a_{14}p_{11}, s_{16}=a_{12}p_{8}+a_{11}p_{10}+a_{14}p_{12}, \\ &s_{17}=a_{13}p_{42}+a_{24}, s_{18}=a_{15}p_{7}-p_{36}+a_{11}a_{24}+a_{13}p_{37}+a_{14}p_{42}, \\ &s_{19}=a_{15}p_{8}-a_{11}p_{36}+a_{14}p_{37}, s_{20}=a_{12}a_{24}-a_{15}a_{23}+a_{13}p_{60}, \\ &s_{21}=a_{15}p_{10}-a_{12}p_{36}+a_{14}p_{60}, s_{22}=p_{60}-a_{15}p_{11}-a_{12}p_{42}, \\ &s_{23}=a_{15}p_{12}-a_{12}p_{37}+a_{11}p_{60}, s_{24}=a_{5}a_{7}s_{14}-a_{5}s_{17}, \\ &s_{25}=a_{5}a_{7}s_{15}-a_{5}s_{18}-a_{6}s_{17}+a_{5}a_{8}s_{20}-a_{5}a_{9}s_{22}, \\ &s_{26}=a_{5}a_{7}s_{16}-a_{5}s_{19}-a_{5}a_{6}s_{18}+a_{5}a_{8}s_{21}-a_{5}a_{9}s_{23}, s_{27}=-a_{5}a_{6}s_{19},\\ &p_{1}=a_{1}+a_{6}, p_{2}=a_{1}a_{6} , p_{3}=a_{21}+a_{25}, p_{4}=a_{21}a_{25}-a_{22}a_{27}, p_{5}=a_{17}a_{25}+a_{18}, \\ & p_{6}=a_{18}a_{25}-a_{22}a_{26}, p_{7}=a_{17}a_{27}-a_{26}, p_{8}=a_{18}a_{27}-a_{26}a_{21}, p_{9}=a_{20}a_{25}-a_{22}a_{23} ,\\ &p_{10}=a_{20}a_{27}-a_{21}a_{23} , p_{11}=a_{23}a_{17}, p_{12}=a_{20}a_{26}-a_{23}a_{18}, p_{13}=a_{1}a_{8}, p_{14}=a_{1}a_{9} , \\ &p_{15}=a_{1}a_{10}, p_{16}=-a_{23}a_{17}, p_{17}=1-a_{13}a_{17}, p_{18}=p_{3}+a_{11}-p_{5}a_{13}-a_{14}a_{17}, \\ & p_{19}=p_{4}+p_{3}a_{11}-p_{6}a_{13}-p_{5}a_{14}+p_{7}a_{16}, p_{20}=a_{11}p_{4}-a_{14}p_{6}+a_{16}p_{8}, \\ &p_{21}=a_{12}-a_{20}p_{13} , p_{22}=a_{12}p_{3}-p_{9}p_{13}-a_{14}a_{20}-a_{16}a_{23}, p_{23}=a_{12}p_{4}-a_{14}p_{9}+a_{16}p_{10}, \\ &p_{24}=a_{12}a_{17}-a_{20}, p_{25}=a_{12}p_{5}-a_{11}a_{20}+a_{16}p_{16}-p_{9},p_{26}=a_{12}p_{6}-a_{11}p_{9}+a_{16}p_{12}, \\ & p_{27}=a_{23}+a_{13}p_{16}, p_{28}=a_{12}p_{7}-p_{10}+a_{11}a_{23}+a_{13}p_{12}+a_{14}p_{16}, \\ & p_{29}=a_{12}p_{8}-a_{11}p_{10}+a_{14}p_{12}, p_{30}=p_{18}+p_{1}p_{17}-a_{8}p_{21}+a_{9}p_{24}-a_{10}p_{27}, \\ & p_{31}=p_{2}p_{17}+p_{19}+p_{1}p_{18}-a_{8}p_{22}-p_{13}p_{21}+a_{9}p_{25}+p_{14}p_{24}-a_{10}p_{28}-p_{15}p_{27}, \\ & p_{32}=p_{20}+p_{1}p_{19}+p_{2}p_{18}-a_{8}p_{23}-p_{13}p_{22}+a_{9}p_{26}+p_{14}p_{25}-a_{10}p_{29}-p_{15}p_{28}, \\ & p_{33}=p_{1}p_{20}+p_{2}p_{19}-p_{13}p_{23}+p_{14}p_{26}-p_{15}p_{29}, p_{34}=p_{2}p_{20}, p_{35}=a_{19}a_{25}-a_{22}a_{24}, \\ & p_{36}=a_{19}a_{27}-a_{21}a_{24}, p_{37}=a_{19}a_{26}-a_{18}a_{24}, p_{38}=-a_{2}a_{7}, p_{39}=a_{2}a_{8}, p_{40}=-a_{2}a_{9}, \\ & p_{41}=a_{2}a_{10}, p_{42}=-a_{17}a_{24}, p_{43}=a_{17}a_{24}, p_{44}=1-a_{13}a_{17}, \\ & p_{45}=a_{11}+p_{3}-a_{13}p_{5}-a_{14}a_{17}, p_{46}=a_{11}p_{3}-a_{13}p_{6}-a_{14}p_{5}+a_{16}p_{7}, \\ &p_{47}=a_{11}p_{4}-a_{14}p_{6}+a_{16}p_{8}, p_{48}=a_{15}-a_{13}a_{19}, \\ &p_{49}=a_{15}p_{3}-a_{13}p_{35}-a_{14}a_{19}-a_{16}a_{24}, p_{50}=a_{15}p_{4}-a_{14}p_{35}+a_{16}p_{36}, \\ &p_{51}=a_{15}a_{17}-a_{19}, p_{52}=a_{15}p_{5}-p_{35}-a_{11}a_{19}+a_{16}p_{42}, p_{53}=a_{15}p_{6}-a_{11}p_{35}+a_{16}p_{37}, \\ &p_{54}=a_{15}p_{7}-p_{36}+a_{11}a_{24}+a_{13}p_{37}-a_{14}p_{43}, p_{55}=a_{15}p_{8}-a_{11}p_{36}+a_{14}p_{37}, \\ &p_{56}=p_{38}p_{44}, p_{57}=p_{38}p_{45}+p_{39}p_{48}+p_{40}p_{51}-a_{13}p_{41}p_{43}+a_{24}p_{41}, \\ &p_{58}=p_{38}p_{46}+p_{39}p_{49}+p_{40}p_{52}+p_{41}p_{54}, p_{59}=p_{38}p_{47}+p_{39}p_{50}+p_{40}p_{53}+p_{41}p_{55}, \\ &p_{60}=a_{19}a_{23}-a_{20}a_{24}, p_{61}=a_{12}-a_{13}a_{20}, p_{62}=a_{12}p_{3}-a_{13}p_{9}-a_{14}a_{20}-a_{16}a_{23}, \\ &p_{63}=a_{12}p_{4}-a_{14}p_{9}+a_{16}p_{9}, p_{64}=a_{15}-a_{13}a_{19}, p_{65}=a_{15}p_{3}-a_{13}p_{35}-a_{14}a_{19}-a_{16}a_{24}, \\ & p_{66}=a_{15}p_{4}-a_{14}p_{35}+a_{16}p_{36}, p_{67}=a_{15}a_{20}-a_{12}a_{19}, p_{68}=a_{15}p_{9}-a_{12}p_{35}+a_{16}p_{60}, \\ &p_{69}=a_{12}a_{24}+a_{13}p_{60}-a_{15}a_{23}, p_{70}=a_{15}p_{10}-a_{12}p_{36}+a_{14}p_{60}, p_{71}=a_{3}a_{7}p_{61}-a_{3}p_{64}, \\ &p_{72}=a_{3}a_{7}p_{62}-a_{3}p_{65}-a_{3}a_{6}p_{64}+a_{3}a_{9}p_{67}-a_{3}a_{10}p_{69}, \\ &p_{73}=a_{3}a_{7}p_{63}-a_{3}p_{66}-a_{3}a_{6}p_{65}+a_{3}a_{9}p_{68}-a_{3}a_{10}p_{70}, p_{74}=-a_{3}a_{6}p_{66}. \end{aligned}$$

Appendix B

$$\begin{aligned} \Delta = \begin{vmatrix} e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\ g_{1} & g_{2} & g_{3} & g_{4} & g_{5} \\ f_{1} & f_{2} & f_{3} & f_{4} & f_{5} \\ l_{1} & l_{2} & l_{3} & l_{4} & l_{5} \\ m_{1} & m_{2} & m_{3} & m_{4} & m_{5} \end{vmatrix} , \Delta _{1}= \begin{vmatrix} G & e_{2} & e_{3} & e_{4} & e_{5} \\ 0 & g_{2} & g_{3} & g_{4} & g_{5} \\ 0 & f_{2} & f_{3} & f_{4} & f_{5} \\ 0 & l_{2} & l_{3} & l_{4} & l_{5} \\ 0 & m_{2} & m_{3} & m_{4} & m_{5} \end{vmatrix} ,\\ \Delta _{2}= \begin{vmatrix} e_{1} & G & e_{3} & e_{4} & e_{5} \\ g_{1} & 0 & g_{3} & g_{4} & g_{5} \\ f_{1} & 0 & f_{3} & f_{4} & f_{5} \\ l_{1} & 0 & l_{3} & l_{4} & l_{5} \\ m_{1} & 0 & m_{3} & m_{4} & m_{5} \end{vmatrix} , \Delta _{3}= \begin{vmatrix} e_{1} & e_{2} & G & e_{4} & e_{5} \\ g_{1} & g_{2} & 0 & g_{4} & g_{5} \\ f_{1} & f_{2} & 0 & f_{4} & f_{5} \\ l_{1} & l_{2} & 0 & l_{4} & l_{5} \\ m_{1} & m_{2} & 0 & m_{4} & m_{5} \end{vmatrix} ,\\ \Delta _{4}= \begin{vmatrix} e_{1} & e_{2} & e_{3} & G & e_{5} \\ g_{1} & g_{2} & g_{3} & 0 & g_{5} \\ f_{1} & f_{2} & f_{3} & 0 & f_{5} \\ l_{1} & l_{2} & l_{3} & 0 & l_{5} \\ m_{1} & m_{2} & m_{3} & 0 & m_{5} \end{vmatrix} , \Delta _{5}= \begin{vmatrix} e_{1} & e_{2} & e_{3} & e_{4} & G \\ g_{1} & g_{2} & g_{3} & g_{4} & 0 \\ f_{1} & f_{2} & f_{3} & f_{4} & 0 \\ l_{1} & l_{2} & l_{3} & l_{4} & 0 \\ m_{1} & m_{2} & m_{3} & m_{4} & 0 \end{vmatrix}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, C.S., Biswas, S. Thermomechanical interactions in nonlocal thermoelastic medium with double porosity structure. Mech Time-Depend Mater (2024). https://doi.org/10.1007/s11043-024-09669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11043-024-09669-5

Keywords

Navigation