Skip to main content
Log in

Modeling the viscoelastic behavior in the frequency domain of crosslinked polystyrene with different degrees of crosslinking from the perspective of relaxation

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The viscoelastic behavior in the frequency domain of crosslinked polystyrene (CPS) with two different degrees of crosslinking is characterized and modeled. A viscoelastic model from a relaxation perspective (VR model) was established considering different relaxation spectra. The relaxation spectrum is described by the distribution function of relaxation times in the VR model. The fitting quality of the VR model based on the distribution function corresponding to the Kohlrausch–Williams–Watts function is much higher than that of the conventional Zener model, but slightly lower than that of the fractional-derivative Kelvin–Voigt (FKV) model. The fitting quality of the VR model based on the distribution function corresponding to the Cole–Cole (CC) function is much better than that of the VR model with other distribution functions. This shows that the CC distribution function can better describe the relaxation spectrum of the CPS. Although the modulus expression of the Cole–Cole relaxation function is mathematically consistent with FKV, the VR model with the CC distribution function shows its superiority in having a definite physical meaning. The effect of the degree of crosslinking on the model parameters is analyzed. A higher equilibrium modulus, longer relaxation time, and narrower distribution of relaxation times are observed for CPS2.5 with a higher degree of crosslinking. The result shows that the viscoelastic behavior in the frequency domain of the crosslinked polymer can be well described through the VR model, which is applied by the distribution function of relaxation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdessamad, Z., Kostin, I., Panasenko, G., Smyshlyaev, V.P.: Memory effect in homogenization of a viscoelastic Kelvin-Voigt model with time dependent coefficients. Math. Models Methods Appl. Sci. 19, 1603–1630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Alcoutlabi, M., Martinez-Vega, J.J.: A modified fractional model to describe the viscoelastic behavior of solid amorphous polymers: the effect of physical aging. J. Macromol. Sci. B, Phys. 38, 991–1007 (1999)

    Article  Google Scholar 

  • Alhadidi, A.H., Gibert, J.M.: A new perspective on static bifurcations in the presence of viscoelasticity. Nonlinear Dyn. 103, 1345–1363 (2021)

    Article  Google Scholar 

  • Alves, N.M., Gómez Ribelles, J.L., Gómez Tejedor, J.A., Mano, J.F.: Viscoelastic behavior of poly(methyl methacrylate) networks with different cross-linking degrees. Macromolecules 37, 3735–3744 (2004)

    Article  Google Scholar 

  • Atanackovic, T.M.: A modified Zener model of a viscoelastic body. Contin. Mech. Thermodyn. 14, 137–148 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  • Barrientos, E., Pelayo, F., Noriega, Á., Lamela, M.J., Fernández-Canteli, A., Tanaka, E.: Optimal discrete-time Prony series fitting method for viscoelastic materials. Mech. Time-Depend. Mater. 23, 193–206 (2019)

    Article  Google Scholar 

  • Baumgaertel, M., Winter, H.H.: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol. Acta 28, 511–519 (1989)

    Article  Google Scholar 

  • Bhattacharjee, S., Swamy, A.K., Daniel, J.S.: Continuous relaxation and retardation spectrum method for viscoelastic characterization of asphalt concrete. Mech. Time-Depend. Mater. 16, 287–305 (2012)

    Article  Google Scholar 

  • Bihari, C., Patil, A., Shasthry, S.M., Baweja, S., Kumar, G., Sarin, S.K.: Viscoelastic test-based bleeding risk score reliably predicts coagulopathic bleeding in decompensated cirrhosis and ACLF patients. Hepatol. Int. 14, 597–608 (2020)

    Article  Google Scholar 

  • Bochnia, J., Blasiak, S.: Fractional relaxation model of materials obtained with selective laser sintering technology. Rapid Prototyping J. 25, 1355–2546 (2019)

    Article  Google Scholar 

  • Boisly, M., Schuldt, S., Kästner, M., Schneider, Y., Rohm, H.: Experimental characterisation and numerical modelling of cutting processes in viscoelastic solids. J. Food Eng. 191, 1–9 (2016)

    Article  Google Scholar 

  • Camasão, D.B., Mantovani, D.: The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. a critical review. Mater. Today Bio. 10, 100106 (2021)

    Article  Google Scholar 

  • Chang, A.C., Uto, K., Homma, K., Nakanishiet, J.: Viscoelastically tunable substrates elucidate the interface-relaxation-dependent adhesion and assembly behaviors of epithelial cells. Biomaterials 274, 120861 (2021)

    Article  Google Scholar 

  • Chen, Q., Liang, S.W., Shiau, H.S., Colby, R.H.: Linear viscoelastic and dielectric properties of phosphonium siloxane ionomers. ACS Macro Lett. 2, 970–974 (2013)

    Article  Google Scholar 

  • Chen, Y.W., Mao, J.L., Wu, J.S.: Microwave transparent crosslinked polystyrene nanocomposites with enhanced high voltage resistance via 3D printing bulk polymerization method. Compos. Sci. Technol. 157, 160–167 (2018)

    Article  Google Scholar 

  • Chiriţă, S., Zampoli, V.: On the forward and backward in time problems in the Kelvin-Voigt thermoviscoelastic materials. Mech. Res. Commun. 68, 25–30 (2015)

    Article  Google Scholar 

  • Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941)

    Article  Google Scholar 

  • Comer, A.C., Kalika, D.S., Rowe, B.W., Freeman, B.D., Paul, D.R.: Dynamic relaxation characteristics of Matrimid polyimide. Polymer 50, 891–897 (2009)

    Article  Google Scholar 

  • Craiem, D.O., Rojo, F.J., Atienza, J.M., Guinea, G.V., Armentano, R.L.: Fractional calculus applied to model arterial viscoelasticity. Lat. Am. Appl. Res. 38, 141–145 (2008)

    Google Scholar 

  • Csima, G.Y., Vozary, E.: Stretched exponent rheological model of gum candy. Acta Aliment. 45, 149–156 (2016)

    Article  Google Scholar 

  • Dacol, V., Caetano, E., Correia, J.R.: A new viscoelasticity dynamic fitting method applied for polymeric and polymer-based composite materials. Materials 13, 5213 (2020)

    Article  Google Scholar 

  • Davidson, D.W., Cole, R.H.: Dielectric relaxation in glycerine. J. Chem. Phys. 18, 1417 (1950)

    Article  Google Scholar 

  • Debye, P.: Polar Molecules. Dover, New York (1929)

    MATH  Google Scholar 

  • Duan, Y.J., Zhang, L.T., Wada, T., Kato, H., Pineda, E., Crespo, D., Pelletier, J.M., Qiao, J.C.: Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery. J. Mater. Sci. Technol. 107, 82–91 (2022)

    Article  Google Scholar 

  • Errede, L.A.: Polymer swelling, 13: correlation of Flory-Huggins interaction parameter, \(\chi \), with molecular structure in polystyrene-liquid systems. J. Appl. Polym. Sci. 45, 619–631 (1992)

    Article  Google Scholar 

  • Fancey, K.S.: A mechanical model for creep, recovery and stress relaxation in polymeric materials. J. Mater. Sci. 40, 4827–4831 (2005)

    Article  Google Scholar 

  • Gamaniel, S.S., Dini, D., Biancofiore, L.: The effect of fluid viscoelasticity in lubricated contacts in the presence of cavitation. Tribol. Int. 160, 107011 (2021)

    Article  Google Scholar 

  • Garrappa, R., Mainardi, F., Guido, M.: Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19, 1105–1160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Glagolev, M.K., Lazutin, A.A., Vasilevskaya, V.V.: Macroscopic properties of hypercrosslinked polystyrene networks: an atomistic and coarse-grained molecular dynamics simulation. Macromol. Symp. 348, 14–24 (2015)

    Article  Google Scholar 

  • Gupta, R.S., Berrellez, D., Chhugani, N., Lopez, C.L., Maldonado, A., Shah, S.B.: Effects of paclitaxel on the viscoelastic properties of mouse sensory nerves. J. Biomech. 115, 110125 (2020)

    Article  Google Scholar 

  • Hei, X., Chen, W., Pang, G., Xiao, R., Zhang, C.: A new visco-elasto-plastic model via time-space fractional derivative. Mech. Time-Depend. Mater. 22, 129–141 (2018)

    Article  Google Scholar 

  • Heymans, N., Podlubny, L.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)

    Article  Google Scholar 

  • Hu, K.X., Zhu, K.Q.: A note on fractional Maxwell model for PMMA and PTFE. Polym. Test. 30, 797–799 (2011)

    Article  Google Scholar 

  • Ishii, A.: Spatial and temporal heterogeneity of Kohlrausch-Williams-Watts stress relaxations in metallic glasses. Compos. Mater. Sci. 198, 110673 (2021)

    Article  Google Scholar 

  • Jiménez-Avalos, H.A., Ramos-Ramírez, E.G., Salazar-Montoya, J.A.: Viscoelastic characterization of gum Arabic and maize starch mixture using the Maxwell model. Carbohydr. Polym. 62, 11–18 (2005)

    Article  Google Scholar 

  • Johnson, A.R., Quigley, C.J.: A viscohyperelastic Maxwell model for rubber viscoelasticity. Rubber Chem. Technol. 65, 137–153 (1992)

    Article  Google Scholar 

  • Kalakkunnath, S., Kalika, D.S., Lin, H.Q., Freeman, B.D.: Viscoelastic characteristics of UV polymerized poly(ethylene glycol) diacrylate networks with varying extents of crosslinking. J. Polym. Sci. Polym. Phys. 44, 2058–2070 (2006)

    Article  Google Scholar 

  • Katicha, S.W., Flintsch, G.W.: Fractional viscoelastic models: master curve construction, interconversion, and numerical approximation. Rheol. Acta 51, 675–689 (2012)

    Article  Google Scholar 

  • Khurana, A., Kumar, A., Raut, S.K., Joglekar, M.M.: Effect of viscoelasticity on the nonlinear dynamic behavior of dielectric elastomer minimum energy structures. Int. J. Solids Struct. 208–209, 141–153 (2021)

    Article  Google Scholar 

  • Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohlrausch, R.: Theorie des elektrischen rückstandes in der leidner flasche. Pogg. Ann. Phys. Chem. 91, 179–214 (1854)

    Article  Google Scholar 

  • Krzton-Maziopa, A., Oratowska, J., Zukowska, G., Plocharski, J.: Microstructure and viscoelasticity of electrorheological suspensions with hybrid microspheres. Polym. Adv. Technol. 29, 2486–2495 (2018)

    Article  Google Scholar 

  • Kumar, A., Lopez-Pamies, O.: On the two-potential constitutive modeling of rubber viscoelastic materials. C. R., Méc. 344, 102–112 (2016)

    Article  Google Scholar 

  • Lazopoulos, K.A., Karaoulanis, D., Lazopoulos, A.K.: On fractional modelling of viscoelastic mechanical systems. Mech. Res. Commun. 78, 1–5 (2016)

    Article  Google Scholar 

  • Li, Y.L., Liu, J.J., Kong, J.J., Qi, N., Chen, Z.Q.: Role of ultramicropores in the remarkable gas storage in hypercrosslinked polystyrene networks studied by positron annihilation. Phys. Chem. Chem. Phys. 23, 13603 (2021)

    Article  Google Scholar 

  • Lindsey, C.P., Patterson, G.D.: Detailed comparison of the Williams-Watts and Cole-Davidson functions. J. Chem. Phys. 73, 3348–3357 (1980)

    Article  Google Scholar 

  • Liu, H.L., Yu, W.D., Jin, H.B.: Modeling the stress-relaxation behavior of wool fibers. J. Appl. Polym. Sci. 110, 2078–2084 (2008)

    Article  Google Scholar 

  • Liu, Y.Z., Yu, D.L., Zhao, H.G., Wen, J.H., Wen, X.S.: Theoretical study of two-dimensional phononic crystals with viscoelasticity based on fractional derivative models. Phys. Appl. Phys. 41, 065503 (2008)

    Article  Google Scholar 

  • Liu, G.D., Wu, J.P., Ma, H.Q., Zhang, Z.J., Zhang, H.Q.: Study on enthalpy relaxation of glassy polystyrene using Kohlrausch, Davidson-Cole and Havriliak-Negami distribution functions. J. Non-Cryst. Solids 550, 120364 (2020)

    Article  Google Scholar 

  • Liu, H.Q., Zeiada, W., Al-Khateeb, G.G., Shanableh, A., Samarai, M.: A framework for linear viscoelastic characterization of asphalt mixtures. Mater. Struct. 53, 1–15 (2020)

    Article  Google Scholar 

  • Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 109–115 (1867)

    Google Scholar 

  • Mergen, Ö.B., Umut, E., Arda, E., Kara, S.: A comparative study on the AC/DC conductivity, dielectric and optical properties of polystyrene/graphene nanoplatelets (PS/GNP) and multi-walled carbon nanotube (PS/MWCNT) nanocomposites. Polym. Test. 90, 106682 (2020)

    Article  Google Scholar 

  • Pan, Y.S., Xiong, D.S.: Stress-relaxation models of nano-HA/PVA gel biocomposites. Mech. Time-Depend. Mater. 17, 195–204 (2013)

    Article  Google Scholar 

  • Qiao, J.C., Casalini, R., Pelletier, J.M., Yao, Y.: Dynamics of the strong metallic glass Zn38Mg12Ca32Yb18. J. Non-Cryst. Solids 447, 85–90 (2016)

    Article  Google Scholar 

  • Rajagopal, K.R.: A note on a reappraisal and generalization of the Kelvin-Voigt model. Mech. Res. Commun. 36, 232–235 (2009)

    Article  MATH  Google Scholar 

  • Rault, J.: Relaxation of glasses: the Kohlrausch exponent. J. Non-Cryst. Solids 357, 339–345 (2011)

    Article  Google Scholar 

  • Roland, C.M., Archer, L.A., Mott, P.H., Sanchez-Reyes, J.: Determining rouse relaxation times from the dynamic modulus of entangled polymers. J. Rheol. 48, 395–403 (2004)

    Article  Google Scholar 

  • Rosen, S.L.: Fundamental Principles of Polymeric Materials. Wiley, New York (1993)

    Google Scholar 

  • Schiavi, A., Prato, A.: Evidences of non-linear short-term stress relaxation in polymers. Polym. Test. 59, 220–229 (2017)

    Article  Google Scholar 

  • Schieppati, D., Germon, R., Galli, F., Rigamonti, M.G., Stucchi, M., Boffito, D.C.: Influence of frequency and amplitude on the mucus viscoelasticity of the novel mechano-acoustic Frequencer™. Respir. Med. 153, 52–59 (2019)

    Article  Google Scholar 

  • Shahin-Shamsabadi, A., Hashemi, A., Tahriri, M., Bastami, F., Salehi, M., Abbas, F.M.: Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold importance of viscoelasticity. Mater. Sci. Eng. C 90, 280–288 (2018)

    Article  Google Scholar 

  • Stiassnie, M.: On the application of fractional calculus for the formulation of viscoelastic models. Appl. Math. Model. 3, 300–302 (1979)

    Article  MATH  Google Scholar 

  • Thomson, W.: On the elasticity and viscosity of metals. Proc. R. Soc. Lond. 14, 289–297 (1865)

    Article  Google Scholar 

  • Tian, T., Zhao, G., Han, D., Zhu, K., Chen, D., Zhang, Z., Wei, Z., Chao, Y., Zhou, P.: Effects of vitrification cryopreservation on follicular morphology and stress relaxation behaviors of human ovarian tissues: sucrose versus trehalose as the non-permeable protective agent. Hum. Reprod. 30, 877–883 (2015)

    Article  Google Scholar 

  • Valderruten, N.E., Valverde, J., Zuluaga, F., Ruiz-Durantez, E.: Synthesis and characterization of chitosan hydrogels cross-linked with dicarboxylic acids. React. Funct. Polym. 84, 21–28 (2014)

    Article  Google Scholar 

  • Valles, E.M., Carella, J.M., Winter, H.H., Baumgaertel, M.: Gelation of a radiation crosslinked model polyethylene. Rheol. Acta 29, 535–542 (1990)

    Article  Google Scholar 

  • Villa, C., Chaplain, M.A.J., Gerisch, A., Lorenzi, T., Math, B.: Mechanical models of pattern and form in biological tissues: the role of stress-strain constitutive equations. Bull. Math. Biol. 83, 80 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Voigt, W.: Ueber innere reibung fester Körper, insbesondere der metalle. Ann. Phys. 283, 671–693 (1892)

    Article  MATH  Google Scholar 

  • Visintin, A.: Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Contin. Mech. Thermodyn. 18, 223–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Williams, G., Watts, D.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)

    Article  Google Scholar 

  • Wu, X.X., Zhao, Z.L., Kang, Y., Ji, X.L., Liu, Y.G.: Viscoelasticity of poly (ethylene glycol) in aqueous solutions of potassium sulfate: a comparison of quartz crystal microbalance with conventional methods. Polym. J. 51, 471–480 (2019)

    Article  Google Scholar 

  • Xiao, R., Sun, H., Chen, W.: An equivalence between generalized Maxwell model and fractional Zener model. Mech. Mater. 100, 148–153 (2016)

    Article  Google Scholar 

  • Zener, C.M., Siegel, S.: Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago (1948)

    Google Scholar 

  • Zetterlund, P.B., Yamazoe, H., Yamada, B.: Propagation and termination kinetics in high conversion free radical co-polymerization of styrene/divinylbenzene investigated by electron spin resonance and Fourier-transform near-infrared spectroscopy. Polymer 43, 7027–7035 (2002)

    Article  Google Scholar 

  • Zetterlund, P.B., Alam, M.N., Minami, H., Okubo, M.: Nitroxide-mediated controlled/living free radical copolymerization of styrene and divinylbenzene in aqueous miniemulsion. Macromol. Rapid Commun. 26, 955–960 (2005)

    Article  Google Scholar 

  • Zhang, W., Sommer, G., Niestrawska, J.A., Holzapfel, G.A., Nordsletten, D.: The effects of viscoelasticity on residual strain in aortic soft tissues. Acta Biomater. 140, 398–411 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Hebei Province (B2021202007).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Shuai Chen] and [Guodong Liu]. The first draft of the manuscript was written by [Shuai Chen] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gang Li or Guodong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Yang, Y., Wan, X. et al. Modeling the viscoelastic behavior in the frequency domain of crosslinked polystyrene with different degrees of crosslinking from the perspective of relaxation. Mech Time-Depend Mater 27, 743–763 (2023). https://doi.org/10.1007/s11043-023-09610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-023-09610-2

Keywords

Navigation