Skip to main content
Log in

Study on a damage model of NEPE solid propellant based on a Weibull distribution

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this paper, the Weibull distribution function was used to describe the mechanical behavior of damage evolution and a new type of nonlinear viscoelastic constitutive model was established. Based on the results of a relaxation test and a uniaxial tensile test of NEPE propellant, the parameters of this model were fitted. The accuracy of the model was verified by comparing the predictive results and the experimental results. The UMAT subroutine was developed based on the Fortran code, and it was applied to simulate a uniaxial tensile model and a biaxial tensile model in ABAQUS. The finite-element calculated solutions are in good agreement with the experimental values, which proves that the subroutine is effective and the Mises equivalence criterion is applicable to NEPE solid propellant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Barriere, T., Gabrion, X., Holopainen, S.: A compact constitutive model to describe the viscoelastic-plastic behaviour of glassy polymers: comparison with monotonic and cyclic experiments and state-of-the-art models. Int. J. Plast. 122, 31–48 (2019)

    Article  Google Scholar 

  • Boyce, M.C., Weber, G.G., Parks, D.M.: On the kinematics of finite strain plasticity. J. Mech. Phys. Solids 37, 647–665 (1989)

    Article  MATH  Google Scholar 

  • Chi, X., Peng, S., Zhang, F., et al.: Effects of aging on statistical mechanical properties distributions of NEPE propellant. J. Solid Rocket Technol. 42(3), 396–402 (2019)

    Google Scholar 

  • Cui, H., Shen, Z., Li, H.: A new constitutive equation for solid propellant with the effects of aging and viscoelastic Poisson’s ratio. Meccanica 53, 2393–2410 (2018)

    Article  MathSciNet  Google Scholar 

  • Dibenedetto, G.L., Vanramshorst, M.C.J., Duvalois, W., et al.: In-situ tensile testing of propellants in SEM: influence of temperature. Propellants Explos. Pyrotech. 42(12), 1396–1400 (2017)

    Article  Google Scholar 

  • Duncan, E.J.S., Margetson, J.: A nonlinear viscoelastic theory for solid rocket propellants based on a cumulative damage approach. Propellants Explos. Pyrotech. 23(2), 94–104 (1998)

    Article  Google Scholar 

  • Jung, G.D., Youn, S.K.: A nonlinear viscoelastic constitutive model of solid propellant. Int. J. Solids Struct. 36, 3755–3777 (1999)

    Article  MATH  Google Scholar 

  • Jung, G.D., Youn, S.K., Kim, B.K.: A three-dimensional nonlinear viscoelastic constitutive model of solid propellant. Int. J. Solids Struct. 37(34), 4715–4732 (2000)

    Article  MATH  Google Scholar 

  • Kumar, N., Patel, B.P., Venkateswara Rao, V., et al.: Hyperviscoelastic constitutive modelling of solid propellants with damage and compressibility. Propellants Explos. Pyrotech. 43(5), 461–471 (2018)

    Article  Google Scholar 

  • Laheru, K.L.: Development of a generalized failure criterion for viscoelastic materials. J. Propuls. Power 8(4), 756–759 (1992)

    Article  Google Scholar 

  • Lei, M., Wang, J., Cheng, J., et al.: A constitutive model of the solid propellants considering the interface strength and dewetting. Compos. Sci. Technol. 185, 107893 (2020)

    Article  Google Scholar 

  • Li, J.-m., Xue, Z., Li, W., et al.: Experimental study on tensile damage process of NEPE propellant. Chin. J. Energ. Mater. 17(02), 241–243 (2009)

    Google Scholar 

  • Miller, T.C.: Damage and dilatometry for solid propellants with digital image correlation. Propellants Explos. Pyrotech. 44(2), 234–245 (2019)

    Article  Google Scholar 

  • OÈzuÈ pek, S., Becker, E.B.: Constitutive equations for solid propellants. J. Eng. Mater. Technol. 119(2), 125–132 (1997)

    Article  Google Scholar 

  • Park, S.: Development of a Nonlinear Viscoelastic Constitutive Equation for Particulate Composites with Growing Damage. University of Texas Press, Austin (1994)

    Google Scholar 

  • Park, S.W., Schapery, R.A.: A viscoelastic constitutive model for particulate composites with growing damage. Int. J. Solids Struct. 34(8), 931–947 (1997)

    Article  MATH  Google Scholar 

  • Qiuqiu, Y., Cai, R., Xu, S., et al.: Damage behavior of GAP solid propellant by in-situ tensile SEM method. Chin. J. Explos. Propellants 42(5), 511–515 (2019)

    Google Scholar 

  • Ramshorst, M.C.J., Benedetto, G.L., Duvalois, W., et al.: Investigation of the failure mechanism of HTPB/AP/Al propellant by in-situ uniaxial tensile experimentation in SEM. Propellants Explos. Pyrotech. 41(4), 700–708 (2016)

    Article  Google Scholar 

  • Schapery, R.A.: Nonlinear constitutive equations for solid propellant based on a work potential and micromechanical model. In: JANNAF Structures and Mechanical Behavior Subcommittee Meeting, Huntsville, March 17-19 (1987)

    Google Scholar 

  • Schapery, R.A.: Analysis of damage growth in particulate composites using a work potential. Compos. Eng. 1(3), 167–182 (1991)

    Article  Google Scholar 

  • Schapery, R.A.: Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage. Int. J. Fract. 97(1–4), 33–66 (1999)

    Article  Google Scholar 

  • Shen, T.: Cavitation damage model and life prediction of solid polymers. Chin. Sci. Bull. 46(11), 965–968 (2001)

    Google Scholar 

  • Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60(2), 153–173 (1987)

    Article  MATH  Google Scholar 

  • Swanson, S.R., Christensen, L.W.: A constitutive formulation for high elongation propellant. J. Spacecr. Rockets 20, 559–566 (1983)

    Article  Google Scholar 

  • Tunç, B., Özüpek, Ş.: Implementation and validation of a three dimensional damaging finite strain viscoelastic model. Int. J. Solids Struct. 102(103), 275–285 (2016)

    Article  Google Scholar 

  • Xu, F., Aravas, N., Sofronis, P.: Constitutive modeling of solid propellant materials with evolving microstructural damage. J. Mech. Phys. Solids 56(5), 2050–2073 (2008)

    Article  MATH  Google Scholar 

  • Xu, J., Ju, Y., Han, B., et al.: Research on relaxation modulus of viscoelastic materials under unsteady temperature states based on TTSP. Mech. Time-Depend. Mater. 17(4), 543–556 (2013)

    Article  Google Scholar 

  • Xu, J., Chen, X., Wang, H., et al.: Thermo-damage-viscoelastic constitutive model of HTPB composite propellant. Int. J. Solids Struct. 51(18), 3209–3217 (2014)

    Article  Google Scholar 

  • Yu, C., Liu, T.-f., Tan, H.-m.: Study on the micromechanics of the NEPE solid propellant. Chin. J. Explos. Propellants 31(1), 56–59 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Fang, Qz., Sha, Bl. et al. Study on a damage model of NEPE solid propellant based on a Weibull distribution. Mech Time-Depend Mater 27, 19–34 (2023). https://doi.org/10.1007/s11043-021-09526-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-021-09526-9

Keywords

Navigation