Skip to main content
Log in

Nonlinear damage creep model based on fractional theory for rock materials

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this study, based on the first application of Caputo fractional derivative with respect to the Mittag–Leffler and power functions, two improved time-varying viscoelastic constitutive models are presented. And the Norton power law and damage factor are applied to build a new damage function. Then the new nonlinear damage creep models 1 and 2 with time-varying viscoelasticity and time-dependent damage are proposed to describe the creep mechanical behavior, which are based on the two improved time-varying viscoelastic constitutive models. Then a series of creep experiments are conducted on the sandstone to obtain the creep experimental data. And based on the creep experimental data of sandstone and creep data of salt rock and mudstone obtained from other papers, the applicability of proposed creep models 1 and 2 is verified. The proposed creep model 2 with power function has a higher accuracy than model 1 with Mittag–Leffler function in describing creep mechanical behavior. And the predicted creep from model 2 is in good agreement with experimental data. Finally, it is shown that compared with creep model 1, model 2 needs fewer parameters to depict the creep mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    Article  MathSciNet  Google Scholar 

  • Arikoglu, A.: A new fractional derivative model for linearly viscoelastic materials and parameter identification via genetic algorithms. Rheol. Acta 53, 219–233 (2014)

    Article  Google Scholar 

  • Cai, M.F.: Rock Mechanics and Engineering. Beijing Science Press, Beijing (2006)

    Google Scholar 

  • Cao, P., Youdao, W., Yixian, W., et al.: Study on nonlinear damage creep constitutive model for high-stress soft rock. Environ. Earth Sci. 75(10), 900.1–900.8 (2016)

    Article  Google Scholar 

  • Garra, R., Giusti, A., Mainardi, F.: The fractional Dodson diffusion equation: a new approach. Ric. Mat. 11(2), 899–909 (2018)

    Article  MathSciNet  Google Scholar 

  • Ghavidel, N.A., Nazem, A., Heidarizadeh, M., et al.: Identification of rheological behavior of salt rock at elevated temperature, case study: Gachsaran evaporative formation. In: Proceedings of the SRM European Regional Symposium EUROCK, Vigo, Spain, pp. 27–29 (2014)

    Google Scholar 

  • Jiang, J., Liu, Q., Xu, J.: Analytical investigation for stress measurement with the rheological stress recovery method in deep soft rock. Int. J. Rock Mech. Min. Sci. 26, 1003–1009 (2016)

    Google Scholar 

  • Kang, J.H., Zhou, F.B., Liu, C., et al.: A fractional non-linear creep model for coal considering damage effect and experimental validation. Int. J. Non-Linear Mech. 76, 20–28 (2015)

    Article  Google Scholar 

  • Kong, X.G., Wang, E.Y., He, X.Q., et al.: Multifractal characteristics and acoustic emission of coal with joints under uniaxial loading. Fractals 25, 1750045 (2017)

    Article  Google Scholar 

  • Li, Y.P., Liu, W., Yang, C.H., et al.: Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer. Int. J. Rock Mech. Min. Sci. 69, 39–49 (2014)

    Article  Google Scholar 

  • Mauricio, G.: Soft rocks in Argentina. Int. J. Min. Sci. Technol. 24, 883–892 (2014)

    Article  Google Scholar 

  • Mighani, S., Taneja, S., Sondergeld, C.H., et al.: Nanoindentation Creep Measurements on Shale. American Rock Mechanics Association, San Francisco (2015)

    Google Scholar 

  • Nopola, J.R., Roberts, L.A.: Time-Dependent Deformation of Pierre Shale as Determined by Long-Duration Creep Tests. American Rock Mechanics Association, Houston (2016)

    Google Scholar 

  • Olver, F.W.J., Maximon, L.C.: Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Shao, J.F., Zhu, Q.Z., Su, K.: Modeling of creep in rock materials in terms of material degradation. Comput. Geotech. 30(7), 549–555 (2003)

    Article  Google Scholar 

  • Shen, S.J., Liu, F.W., Anh, Vo.V.: The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation. J. Comput. Appl. Math. 345, 515–534 (2019)

    Article  MathSciNet  Google Scholar 

  • Suryanto, B.: Predicting the creep strain of PVA-ECC at high stress levels based on the evolution of plasticity and damage. J. Adv. Concr. Technol. 11, 35–48 (2013)

    Article  Google Scholar 

  • Tang, C.A., Kaiser, P.K.: Numerical Simulation of Cumulative Damage and Seismic Energy Release During Brittle Rock Failure–Part I: Fundamentals. Int. J. Rock Mech. Min. Sci. 35(2), 113–121 (1998)

    Article  Google Scholar 

  • Tang, H., Wang, D., Huang, R., et al.: A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics. Bull. Eng. Geol. Environ. 77, 375–383 (2017)

    Article  Google Scholar 

  • Wang, J.B., Liu, X.R., Song, Z.P., et al.: A whole process creeping model of salt rock under uniaxial compression based on inverse S function. Chin. J. Rock. Mech. Eng. 37(11), 2446–2459 (2018)

    Google Scholar 

  • Wu, F., Liu, J.F., Wang, J.: An improved Maxwell creep model for rock based on variable order fractional derivatives. Environ. Earth Sci. 73, 6965–6971 (2015)

    Article  Google Scholar 

  • Wu, F., Chen, J., Zou, Q.: A nonlinear creep damage model for salt rock. Int. J. Damage Mech. 28(5), 758–771 (2018)

    Article  Google Scholar 

  • Xie, H., Liu, J., Ju, Y., et al.: Fractal property of spatial distribution of acoustic emissions during the failure process of bedded rock salt. Int. J. Rock Mech. Min. Sci. 48, 1344–1351 (2011)

    Article  Google Scholar 

  • Yang, W.D., Zhang, Q.Y., Li, S.C., et al.: Time-dependent behavior of diabase and a nonlinear creep model. Rock Mech. Rock Eng. 47, 1211–1224 (2014)

    Article  Google Scholar 

  • Yang, R., Li, Y., Guo, D., et al.: Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine. Int. J. Min. Sci. Technol. 27, 245–252 (2017)

    Article  Google Scholar 

  • Yuan, X.F., Deng, H.F., Li, J.L.: Unloading rheological constitutive model for sandy mudstone. Chin. J. Geotechn. Eng. 37(9), 1733–1739 (2015)

    Google Scholar 

  • Zha, Z.B., Hu, L., Zhang, Z.Z.: Three new classes of generalized almost perfect nonlinear power functions. Finite Fields Appl. 53, 254–266 (2018)

    Article  MathSciNet  Google Scholar 

  • Zhao, Y., Wang, Y., Wang, W., et al.: Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int. J. Rock Mech. Min. Sci. 93, 66–75 (2017)

    Article  Google Scholar 

  • Zhou, H.W., Wang, C.P., Han, B.B., et al.: A creep constitutive model for salt rock based on fractional derivatives. Int. J. Rock Mech. Min. Sci. 48(1), 116–121 (2011)

    Article  Google Scholar 

  • Zhou, H.W., Yi, H.Y., Mishnaevsky, L., et al.: Deformation analysis of polymers composites: rheological model involving time-based fractional derivative. Mech. Time-Depend. Mater. 21(2), 151–161 (2017)

    Article  Google Scholar 

  • Zhou, H.W., Liu, D., Lei, G.: The creep-damage model of salt rock based on fractional derivative. Energies 11(9), 2349–2357 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This introduced work in this paper was supported by the National Key R&D Program of China (2016YFC0600901), National Natural Science Foundation of China (41572334, 11572344), Fundamental Research Funds for the Central Universities (2010YL14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejian Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, D. & Han, C. Nonlinear damage creep model based on fractional theory for rock materials. Mech Time-Depend Mater 25, 341–352 (2021). https://doi.org/10.1007/s11043-020-09447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-020-09447-z

Keywords

Navigation