Skip to main content
Log in

Modelling of the plastic deformation and primary creep of metals coupled with DC in terms of the synthetic theory of irrecoverable deformation

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The paper deals with modelling of the plastic and creep deformation of metals coupled with current. The passage of DC manifests itself in the increase in creep deformation and leads to primary creep time shortening. With plastic deformation, a short electric impulse results in the step-wise decrease of stress (stress-drop) on the stress–strain diagram. To catch these phenomena, we utilize the synthetic theory of recoverable deformation. The constitutive equation of this theory is supplemented by a term taking into account the intensity of DC. Further, we introduce DC intensity into the function governing transient creep. As a result, we predict the parameters of transient creep and calculate the stress-drop as a function of current intensity. The model results show good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrawes, J., Kronenberger, T., Perkins, T., Warley, J.: Effects of DC current on the mechanical behavior of AlMg1SiCu. Mater. Manuf. Process. 22(1), 91–101 (2007)

    Article  Google Scholar 

  • Batdorf, S., Budiansky, B.: Mathematical theory of plasticity based on the concept of slip. NACA Technical Note, 871 (1949)

  • Callister, W.D., Rethwisch, D.G.: Materials Science and Engineering: An Introduction 7th edn. pp. 665–715. Wiley, New York (2007)

    Google Scholar 

  • Chen, R., Yang, F.: Impression creep of a Sn60Pb40 alloy: the effect of electric current. J. Phys. D, Appl. Phys. 41(15), 155406 (2008)

    Article  Google Scholar 

  • Dudko, V., Belyakov, A., Kaibyshev, R.: Evolution of lath substructure and internal stresses in a 9% Cr steel during creep. ISIJ Int. 57(3), 540–549 (2017)

    Article  Google Scholar 

  • Hasija, V., Ghosh, S., Mills, M.J., Joseph, D.S.: Deformation and creep modeling in polycrystalline Ti–6Al alloys. Acta Mater. 51(15), 4533–4549 (2003)

    Article  Google Scholar 

  • Kinney, C., Morris, J.W., Lee, T.K., Liu, K.C., Xue, J., Towne, D.: The influence of an imposed current on the creep of Sn–Ag–Cu solder. J. Electron. Mater. 38(2), 221–226 (2009)

    Article  Google Scholar 

  • Kuksa, L.V., Lebedev, A.A., Koval’chuk, B.I.: Laws of distribution of microscopic strains in two-phase polycrystalline alloys under simple and complex loading. Strength Mater. 18(1), 1–5 (1986)

    Article  Google Scholar 

  • Li, W.Y., Zhou, M.B., Zhang, X.P.: Creep behavior of Cu/Sn-3.0 Ag-0.5 Cu/Cu solder joints under tensile stress coupled with DC current stressing. In: 2015 16th International Conference on Electronic Packaging Technology (ICEPT), pp. 187–192. IEEE Press, New York (2015)

    Chapter  Google Scholar 

  • Nguyen, T.T., Nguyen, T.V., Hong, S.-T., Kim, M.-J., Nam Han, H., Morestin, F.: The effect of short duration electric current on the quasi-static tensile behavior of magnesium AZ31 alloy. Adv. Mater. Sci. Eng. 2016, 9560413 (2016), 10 pages. https://doi.org/10.1155/2016/9560413

    Article  Google Scholar 

  • Perkins, T.A., Kronenberger, T.J., Roth, J.T.: Metallic forging using electrical flow as an alternative to warm/hot working. J. Manuf. Sci. Eng. 129(1), 84–94 (2007)

    Article  Google Scholar 

  • Piazolo, S., Montagnat, M., Grennerat, F., Moulinec, H., Wheeler, J.: Effect of local stress heterogeneities on dislocation fields: examples from transient creep in polycrystalline ice. Acta Mater. 90, 303–309 (2015)

    Article  Google Scholar 

  • Poirier, J.P.: Microscopic creep models and the interpretation of stress-drop tests during creep. Acta Metall. 25(8), 913–917 (1977)

    Article  Google Scholar 

  • Ross, C.D., Irvin, D.B., Roth, J.T.: Manufacturing aspects relating to the effects of direct current on the tensile properties of metals. J. Eng. Mater. Technol. 129(2), 342–347 (2007)

    Article  Google Scholar 

  • Rusinko, K.: Theory of Plasticity and Nonsteady Creep. Vyshcha Shkola, Lviv (1981) (in Russian)

    Google Scholar 

  • Rusinko, A.: Modeling the effect of DC on the creep of metals in terms of the synthetic theory of irrecoverable deformation. Mech. Mater. 93, 163–167 (2016)

    Article  Google Scholar 

  • Rusinko, A., Rusinko, K.: Synthetic theory of irreversible deformation in the context of fundamental bases of plasticity. Mech. Mater. 41(2), 106–120 (2009)

    Article  Google Scholar 

  • Rusinko, A., Rusinko, K.: Plasticity and Creep of Metals. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  • Sanders, J.L. Jr.: Plastic stress–strain relations based on linear loading functions. In: Proceedings of the Second USA National Congress of Applied Mechanics, Ann Arbor, 14–18 June 1954, pp. 455–460 (1954)

    Google Scholar 

  • Sanmartin, A., Kleinstück, K., Quyen, N.H., Paufler, P.: Influence of a direct current and a temperature gradient on the creep rate in \(\mathrm{V}_{3}\mathrm{Si}\). Phys. Status Solidi A 80(2), K171–K174 (1983)

    Article  Google Scholar 

  • Yang, F., Zhao, G.: Effect of electric current on nanoindentation of copper. Nanosci. Nanotechnol. Lett. 2(4), 322–326 (2010)

    Article  Google Scholar 

  • Zhao, G., Yang, F.: Effect of DC current on tensile creep of pure tin. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 591, 97–104 (2014)

    Article  Google Scholar 

  • Zhao, G., Liu, M., Yang, F.: The effect of an electric current on the nanoindentation behavior of tin. Acta Mater. 60(9), 3773–3782 (2012)

    Article  Google Scholar 

  • Zhao, K., Fan, R., Wang, L.J.: The effect of electric current and strain rate on serrated flow of sheet aluminum alloy 5754. J. Mater. Eng. Perform. 25(3), 781–789 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Rusinko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusinko, A., Varga, P. Modelling of the plastic deformation and primary creep of metals coupled with DC in terms of the synthetic theory of irrecoverable deformation. Mech Time-Depend Mater 23, 23–33 (2019). https://doi.org/10.1007/s11043-018-9379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-018-9379-y

Keywords

Navigation