Stress relaxation effect on fatigue life of biaxial prestressed woven E-glass/polyester composites

Abstract

In this study, the stress relaxation effect on the fatigue cycles-to-failure of the biaxial elastic fibre prestressed woven composite (E-glass/polyester) was investigated. The fibre pretension load was applied prior and during matrix cure, and then it has been released to induce compressive residual stresses within the matrix. The longevity of these stresses is questionable, and it needs investigation. The time of residual stress redistribution or relaxation was estimated experimentally for the E-glass fibre prestressing level be equal to 50 MPa. Residual stresses within the polyester matrix have declined by (27%) throughout 110 days leading to reduce the improved fatigue life by about 14% due to the stress relaxation process within the polyester matrix material. The study showed that even though the stress relaxation in the matrix reduced the improved fatigue cycles of the biaxial elastic prestressed E-glass fabric/polyester resin system, some improvement still is possible for long-term performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ashby, M.F., Jones, D.R.H.: Engineering Materials 1: An Introduction to Properties, Applications, and Design. Elsevier, The Boulevard, Langford Lane, Kidlington, Oxford (2012)

    Google Scholar 

  2. Batra, S.: Creep Rupture and Life Prediction of Polymer Composites (2009)

    Google Scholar 

  3. Fancey, K.S.: Composite fibre-containing materials, UK, Patent Number: 2281299B, 1997

  4. Fancey, K.S.: A mechanical model for creep, recovery and stress relaxation in polymeric materials. J. Mater. Sci. 40, 4827–4831 (2005)

    Article  Google Scholar 

  5. Fancey, K.S.: Viscoelastically prestressed polymeric matrix composites: an overview. J. Reinf. Plast. Compos. 35, 1290–1301 (2016)

    Article  Google Scholar 

  6. Farrahi, G.H., Smith, D.J., Zhu, W.X., McMahon, C.A.: Influence of residual stress on fatigue life of hot forged and shot blasted steel components. Int. J. Eng. Trans. A Basics, Trans. B Appl. 15, 79–86 (2002)

    Google Scholar 

  7. Fazal, A., Fancey, K.S.: UHMWPE fibre-based composites: prestress-induced enhancement of impact properties. Composites, Part B, Eng. 66, 1–6 (2014)

    Article  Google Scholar 

  8. Fu, J., Liu, W., Liu, X., Tuladhar, S.L., Wan, Q., Wang, H.: Properties of a new dental photocurable resin based on the expanding monomer and three-component photoinitiator system. J. Wuhan Univ. Technol. Sci. Ed. 29, 384–390 (2014)

    Article  Google Scholar 

  9. Gangaraj, S.M.H., Farrahi, G.H.: Side effects of shot peening on fatigue crack initiation life. Int. J. Eng., Trans. A: Basics 24, 275–280 (2011)

    Google Scholar 

  10. Gopal, A.K., Adali, S., Verijenko, V.E.: Optimal temperature profiles for minimum residual stress in the cure process of polymer composites. Compos. Struct. 48, 99–106 (2000)

    Article  Google Scholar 

  11. Kang, G., Liu, Y., Wang, Y., Chen, Z., Xu, W.: Uniaxial ratchetting of polymer and polymer matrix composites: time-dependent experimental observations. Mater. Sci. Eng. A 523, 13–20 (2009)

    Article  Google Scholar 

  12. Korenev, S.: Electron beam curing of composites. Vacuum 62, 233–236 (2001)

    Article  Google Scholar 

  13. Krishnamurthy, S.: Prestressed Advanced Fibre Reinforced Composites: Fabrication and Mechanical Performance (2006)

    Google Scholar 

  14. Metehri, A., Serier, B., Bachir bouiadjra, B., Belhouari, M., Mecirdi, M.A.: Numerical analysis of the residual stresses in polymer matrix composites. Mater. Des. 30, 2332–2338 (2009)

    Article  Google Scholar 

  15. Miravalles, M.: The Creep Behaviour of Adhesives: A Numerical and Experimental Investigation (2007)

    Google Scholar 

  16. Mostafa, N.H., Ismarrubie, Z., Sapuan, S., Sultan, M.: Effect of equi-biaxially fabric prestressing on the tensile performance of woven E-glass/polyester reinforced composites. J. Reinf. Plast. Compos. 35, 1093–1103 (2016a)

    Article  Google Scholar 

  17. Mostafa, N.H., Ismarrubie, Z.N., Sapuan, S.M., Sultan, M.T.H.: Effect of equi-biaxially fabric prestressing on the tensile performance of woven E-glass/polyester reinforced composites. J. Reinf. Plast. Compos. 35 (2016b)

    Article  Google Scholar 

  18. Mostafa, N.H., Ismarrubie, Z.N., Sapuan, S.M., Sultan, M.T.H.: Effect of fabric biaxial prestress on the fatigue of woven E-glass/polyester composites. Mater. Des. 92 (2016c)

    Article  Google Scholar 

  19. Mostafa, N.H., Ismarrubie, Z.N., Sapuan, S.M., Sultan, M.T.H.: Fibre prestressed composites: theoretical and numerical modelling of unidirectional and plain-weave fibre reinforcement forms. Compos. Struct. 159, 410–423 (2017)

    Article  Google Scholar 

  20. Mostafa, N.H., Ismarrubie, Z.N., Sapuan, S.M., Sultan, M.T.H.: Theoretical development of biaxial fabric prestressed composites under tensile or flexural loading. In: IOP Conference Series: Materials Science and Engineering (2018a)

    Google Scholar 

  21. Mostafa, N.H., Ismarrubie, Z.N., Sapuan, S.M., Sultan, M.T.H.: Theoretical development of biaxial fabric prestressed composites under tension-tension fatigue loading. Pertanika J. Sci. Technol. 26, 1253–1264 (2018b)

    Google Scholar 

  22. Naghashian, S., Fox, B.L., Barnett, M.R.: Actuation curvature limits for a composite beam with embedded shape memory alloy wires. Smart Mater. Struct. 23, 1–10 (2014)

    Article  Google Scholar 

  23. Naik, N.K., Ganesh, V.K.: An analytical method for plain weave fabric composites. Composites 26, 281–289 (1995)

    Article  Google Scholar 

  24. Pang, J.W.C., Fancey, K.S.: An investigation into the long-term viscoelastic recovery of Nylon 6, 6 fibres through accelerated ageing. Mater. Sci. Eng. A 431, 100–105 (2006)

    Article  Google Scholar 

  25. Papanicolaou, G.C., Zaoutsos, S.P.: Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites. In: Guedes, R.M. (ed.) Creep and Fatigue in Polymer Matrix Composites, pp. 3–47. Woodhead Publishing Limited, Cambridge (2011)

    Google Scholar 

  26. Parlevliet, P.P., Bersee, H.E.N., Beukers, A.: Residual stresses in thermoplastic composites—a study of the literature. Part III: Effects of thermal residual stresses. Composites, Part A, Appl. Sci. Manuf. 38, 1581–1596 (2007)

    Article  Google Scholar 

  27. Safarabadi, M., Shokrieh, M.M.: Residual stresses in composite materials. In: Shokrieh, M.M. (ed.) Residual Stresses in Composite Materials, pp. 197–232. Woodhead Publishing Limited, Cambridge (2014)

    Google Scholar 

  28. Talreja, R., Singh, C.V.: Damage and Failure of Composite Materials. Cambridge University Press, University Press, Cambridge (2012)

    Google Scholar 

  29. White, S.R., Hahn, H.T.: Cure cycle optimization for the reduction of processing-induced residual stresses in composite materials. J. Compos. Mater. 27, 1352–1378 (1993)

    Article  Google Scholar 

  30. Zhigun, I.G.: Experimental evaluation of the effect of prestressing the fibers in two directions on certain elastic characteristic of woven-glass reinforced plastics. Polym. Mech. 4, 691–695 (1968)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nawras H. Mostafa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mostafa, N.H. Stress relaxation effect on fatigue life of biaxial prestressed woven E-glass/polyester composites. Mech Time-Depend Mater 23, 497–507 (2019). https://doi.org/10.1007/s11043-018-09402-z

Download citation

Keywords

  • Stress relaxation
  • Elastic fibre prestressed composite
  • Residual stress
  • Fatigue life