Skip to main content
Log in

The effect of viscoelasticity on the stress distribution of adhesively single-lap joint with an internal break in the composite adherends

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The aim of this research is to study the effect of a break in the laminated composite adherends on stress distribution in the adhesively single-lap joint with viscoelastic adhesive and matrix. The proposed model involves two adherends with E-glass fibers and poly-methyl-methacrylate matrix that have been adhered to each other by phenolic-epoxy resin. The equilibrium equations that are based on shear-lag theory have been derived in the Laplace domain, and the governing differential equations of the model have been derived analytically in the Laplace domain. A numerical inverse Laplace transform, which is called Gaver–Stehfest method, has been used to extract desired results in the time domain. The results obtained at the initial time completely matched with the results of elastic solution. Also, a comparison between results obtained from the analytical and finite element models show a relatively good match. The results show that viscoelastic behavior decreases the peak of stress near the break. Finally, the effect of size and location of the break, as well as volume fraction of fibers, on the stress distribution in the adhesive layer is fully investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(A_{f}\) :

Cross-sectional area of each fiber

\(E_{f}\) :

Elastic modulus of each fiber

\(f\) :

First broken fiber in layers which are broken in the upper adherend

\(g\) :

Total number of cut layers

\(G_{a}\) :

Shear modulus of the adhesive layer

\(G_{m}\) :

Shear modulus of matrix

\(h\) :

Adhesive thickness

\(l\) :

Number of first broken layer

\(m\) :

Layer number in the top adherend

\(M\) :

Total number of layers in the top adherend

\(n\) :

Filament number in each layer of the top adherend

\(N\) :

Total number of filaments in each layer of the top adherend

\(\hat{p}\) :

Load in fiber in Laplace domain

\(p\) :

Filament number in each layer of the bottom adherend

\(q\) :

Layer number in the bottom adherend

\(Q\) :

Total number of layers in the bottom adherend

\(r\) :

Total number of broken fibers in each layer

\(\widehat{R}\) :

Eigenvector of matrix \(\mathbf{L}\)

\(s\) :

Laplacian variable

\(t\) :

Time

\(t_{f}\) :

Width of fiber cross-section

\(t_{m}\) :

Thickness of matrix bays

\(T_{n}\) :

Equivalent transferred shear force on the \(n\)th fiber from the adjacent matrices

\(u\) :

Displacement of each fiber along the \(x\) direction

\(v\) :

Displacement of the matrix along the \(y\) direction

\(V_{f}\) :

Volume fraction of fibers in laminate

\(w\) :

Displacement of the matrix along the \(z\) direction

\(\alpha\) :

Boundary associated with break plane in the overlap

\(\beta\) :

Boundary associated with right end of the overlap

\(\gamma\) :

Boundary associated with left end of the overlap

\(\lambda\) :

Eigenvalue of matrix \(\mathbf{L}\)

\(\tau_{zx}^{a}\) :

Shear stress exerted by the adhesive layer to the fiber

\(\tau_{zx}^{\prime a}\) :

Shear stress exerted by the adhesive layer to the surrounding matrix

\(\tau_{zx}\) :

Shear stress exerted by surrounding matrix to the fiber

\(\tau_{yx}\) :

Shear stress exerted by surrounding matrix to the fiber

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Reza.

Appendix

Appendix

\(\mathbf{L}(s)\) is defined as

$$\begin{aligned} &\mathbf{L} (s)_{N\times(M+Q),N\times(M+Q)} \\ &\quad = \left [ \textstyle\begin{array}{c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c} \mathbf{L}_{N\times N}^{3} & \mathbf{L}_{N\times N}^{5} & \mathbf{0}_{N\times N} & \mathbf{0}_{N\times N} & \cdots & \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{6} & \mathbf{0}_{N\times N} & \cdots & \cdots & \cdots & \mathbf{0}_{N\times N} \\ \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{4} & \mathbf{L}_{N\times N}^{5} & \mathbf{0}_{N\times N} & \ddots & \vdots & \mathbf{0}_{N\times N} & \mathbf{0}_{N\times N} & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{5} & \ddots & \ddots & \ddots & \mathbf{0}_{N\times N} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0}_{N\times N} & \ddots & \ddots & \ddots & \mathbf{L}_{N\times N}^{5} & \mathbf{0}_{N\times N} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{4} & \mathbf{L}_{N\times N}^{5} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0}_{N\times N} & \cdots & \mathbf{0}_{N\times N} & \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{3} & \mathbf{0}_{N\times N} & \cdots & \cdots & \cdots & \cdots & \mathbf{0}_{N\times N} \\ \mathbf{L}_{N\times N}^{6} & \mathbf{0}_{N\times N} & \cdots & \cdots & \cdots & \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{3} & \mathbf{L}_{N\times N}^{5} & \mathbf{0}_{N\times N} & \mathbf{0}_{N\times N} & \cdots & \mathbf{0}_{N\times N} \\ \mathbf{0}_{N\times N} & \mathbf{0}_{N\times N} & \vdots & \vdots & \vdots & \vdots & \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{4} & \mathbf{L}_{N\times N}^{5} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{5} & \ddots & \ddots & \ddots & \mathbf{0}_{N\times N} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \mathbf{0}_{N\times N} & \ddots & \ddots & \ddots & \mathbf{L}_{N\times N}^{5} & \mathbf{0}_{N\times N} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{4} & \mathbf{L}_{N\times N}^{5} \\ \mathbf{0}_{N\times N} & \cdots & \cdots & \cdots & \cdots & \mathbf{0}_{N\times N} & \mathbf{0}_{N\times N} & \cdots & \mathbf{0}_{N\times N} & \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{3} \end{array}\displaystyle \right ] \end{aligned}$$
(41)

where \(\mathbf{0}_{N\times N}\) is a zero matrix, and \(\mathbf{L}_{N\times N}^{3}\), \(\mathbf{L}_{N\times N}^{4}\), \(\mathbf{L}_{N\times N}^{5}\), and \(\mathbf{L}_{N\times N}^{6}\) are defined as follows:

$$\begin{aligned} \mathbf{L}_{N\times N}^{3} &= \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \chi_{5} & \chi_{3} & 0 & \cdots & 0 \\ \psi & \chi_{6} & \psi & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \psi & \chi_{6} & \psi \\ 0 & \cdots & 0 & \chi_{3} & \chi_{5} \end{array}\displaystyle \right ],\quad \mathbf{L}_{N\times N}^{4} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} -3\psi & \psi & 0 & \cdots & 0 \\ \psi & -4\psi & \psi & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \psi & -4\psi & \psi \\ 0 & \cdots & 0 & \psi & -3\psi \end{array}\displaystyle \right ], \end{aligned}$$
(42)
$$\begin{aligned} \mathbf{L}_{N\times N}^{5} &= \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \psi & 0 & 0 & \cdots & 0 \\ 0 & \psi & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 0 & \psi & 0 \\ 0 & \cdots & 0 & 0 & \psi \end{array}\displaystyle \right ],\quad \mathbf{L}_{N\times N}^{6} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \chi_{4} & \varphi_{2} & 0 & \cdots & 0 \\ 0 & \varphi_{3} & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 0 & \varphi_{3} & 0 \\ 0 & \cdots & 0 & \varphi_{2} & \chi_{4} \end{array}\displaystyle \right ] \end{aligned}$$
(43)

where \(\chi_{1}\) to \(\chi_{6}\) are defined as

$$\begin{aligned} \begin{aligned} \chi_{1} &= -\psi- \varphi_{2} - \varphi_{3},\qquad \chi_{2} =-2\psi- \varphi_{3}, \qquad \chi_{3} =\psi- \varphi_{2}, \\ \chi_{4} &= \varphi_{1} + \varphi_{2},\qquad \chi_{5} =-2\psi- \varphi_{1} - \varphi_{2},\qquad \chi_{6} =-3\psi- \varphi_{3}. \end{aligned} \end{aligned}$$
(44)

And also \(\varphi_{1}\), \(\varphi_{2}\), \(\varphi_{3}\) and \(\psi\) are given by

$$\begin{aligned} \begin{aligned} \varphi_{1} &=s \widehat{G}_{a} ( s ) \frac{t_{f}}{E_{f} A_{f} h},\qquad \varphi_{2} = \frac{1}{4} s \widehat{G}_{a} ( s ) \frac{t_{m}}{E_{f} A_{f} h},\qquad \varphi_{3} =s \widehat{G}_{a} ( s ) \frac{t_{f} +0.5 t_{m}}{E_{f} A_{f} h}, \\ \psi&=s \widehat{G}_{m} ( s ) \frac{t_{f}}{E_{f} A_{f} t_{m}}. \end{aligned} \end{aligned}$$
(45)

Also

$$\begin{aligned} \begin{aligned} \mathbf{L}^{C} (s)_{N\times M,N\times M} &= \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \mathbf{L}_{N\times N}^{7} & \mathbf{L}_{N\times N}^{5} & \mathbf{0}_{N\times N} & \cdots & \mathbf{0}_{N\times N} \\ \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{4} & \mathbf{L}_{N\times N}^{5} & \mathbf{0}_{N\times N} & \vdots \\ \mathbf{0}_{N\times N} & \ddots & \ddots & \ddots & \mathbf{0}_{N\times N} \\ \vdots & \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{4} & \mathbf{L}_{N\times N}^{5} \\ \mathbf{0}_{N\times N} & \cdots & \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{7} \end{array}\displaystyle \right ], \\ \mathbf{L}^{D} (s)_{N\times Q,N\times Q} &= \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \mathbf{L}_{N\times N}^{7} & \mathbf{L}_{N\times N}^{5} & \mathbf{0}_{N\times N} & \cdots & \mathbf{0}_{N\times N} \\ \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{4} & \mathbf{L}_{N\times N}^{5} & \mathbf{0}_{N\times N} & \vdots \\ \mathbf{0}_{N\times N} & \ddots & \ddots & \ddots & \mathbf{0}_{N\times N} \\ \vdots & \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{4} & \mathbf{L}_{N\times N}^{5} \\ \mathbf{0}_{N\times N} & \cdots & \mathbf{0}_{N\times N} & \mathbf{L}_{N\times N}^{5} & \mathbf{L}_{N\times N}^{7} \end{array}\displaystyle \right ]. \end{aligned} \end{aligned}$$
(46)

\(\mathbf{L}_{N\times N}^{7}\) is defined as

$$ \mathbf{L}_{N\times N}^{7} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} -2\psi & \psi & 0 & \cdots & 0 \\ \psi & -3\psi & \psi & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \psi & -3\psi & \psi \\ 0 & \cdots & 0 & \psi & -2\psi \end{array}\displaystyle \right ]. $$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reza, A., Shishesaz, M. The effect of viscoelasticity on the stress distribution of adhesively single-lap joint with an internal break in the composite adherends. Mech Time-Depend Mater 22, 373–399 (2018). https://doi.org/10.1007/s11043-017-9362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-017-9362-z

Keywords

Navigation