Skip to main content
Log in

Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery’s nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abu Al-Rub, R.K.A., Darabi, M.K., Little, D.N., Masad, E.A.: A micro-damage healing model that improves prediction of fatigue life in asphalt mixes. Int. J. Eng. Sci. 48(11), 966–990 (2010)

    Article  Google Scholar 

  • Abu Al-Rub, R.K.A., Darabi, M.K., You, T., Masad, E.A., Little, D.N.: A unified continuum damage mechanics model for predicting the mechanical response of asphalt mixtures and pavements. Int. J. Roads Airports 1, 68–84 (2011)

    Google Scholar 

  • Abu Al-Rub, R.K.A., Darabi, M.K., Kim, S.M., Little, D.N., Glover, C.J.: Mechanistic-based constitutive modeling of oxidative aging in aging-susceptible materials and its effect on the damage potential of asphalt concrete. Constr. Build. Mater. 41, 439–454 (2013)

    Article  Google Scholar 

  • Abu Al-Rub, R.K.A., Tehrani, A.H., Darabi, M.K.: Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites. Int. J. Damage Mech. 24(2), 198–244 (2015)

    Article  Google Scholar 

  • Al-Qadi, I.L., Wang, H.: Evaluation of pavement damage due to new tire designs. Illinois Center for Transportation, ICT (2009)

  • Al-Qadi, I.L., Yoo, P.J.: Effect of surface tangential contact stress on flexible pavement response. J. Assoc. Asph. Paving 76, 663–692 (2007)

    Google Scholar 

  • Al-Qadi, I.L., Yoo, P.J., Elseifi, M.A., Nelson, S.: Creep behavior of hot-mix asphalt due to heavy vehicular tire loading. J. Eng. Mech. 135(11), 1265–1273 (2009)

    Article  Google Scholar 

  • Allou, F., Takarli, M., Dubois, F., Petit, C., Absi, J.: Numerical finite element formulation of the 3D linear viscoelastic material model: complex Poisson’s ratio of bituminous mixtures. Arch. Civ. Mech. Eng. 15(4), 1138–1148 (2015)

    Article  Google Scholar 

  • Ambassa, Z., Allou, F., Petit, C., Eko, R.M.: Fatigue life prediction of an asphalt pavement subjected to multiple axle loadings with viscoelastic FEM. Constr. Build. Mater. 43, 443–452 (2013)

    Article  Google Scholar 

  • Ban, H., Im, S., Kim, Y.R.: Nonlinear viscoelastic approach to model damage-associated performance behavior of asphaltic mixture and pavement structure. Can. J. Civ. Eng. 40(4), 313–323 (2013)

    Article  Google Scholar 

  • Bonaquist, R., Anderson, D.A., Fernando, E.: Relationship between moduli measured in laboratory by different procedures and field deflection measurements (with discussion). J. Assoc. Asph. Paving Technol. 55, 419–457 (1986)

    Google Scholar 

  • Buttlar, W.G., Al-Khateeb, G.G., Bozkurt, D.: Development of a hollow cylinder tensile tester to obtain mechanical properties of bituminous paving mixtures. J. Assoc. Asph. Paving Technol. 68, 369–403 (1999)

    Google Scholar 

  • Castillo, D., Caro, S., Darabi, M., Masad, E.: Studying the effect of microstructural properties on the mechanical degradation of asphalt mixtures. Constr. Build. Mater. 93, 70–83 (2015)

    Article  Google Scholar 

  • Chabot, A., Chupin, O., Deloffre, L., Duhamel, D.: Viscoroute 2.0 a: tool for the simulation of moving load effects on asphalt pavement. Road Mater. Pavement 11(2), 227–250 (2010)

    Google Scholar 

  • Christensen, D.W., Bonaquist, R.F.: Evaluation of indirect tensile test (IDT) procedures for low-temperature performance of hot mix asphalt. NCHRP Report No. 530 (2004)

  • Darabi, M.K., Abu Al-Rub, R.K.A., Masad, E.A., Huang, C.W., Little, D.N.: A thermo-viscoelastic–viscoplastic–viscodamage constitutive model for asphaltic materials. Int. J. Solids Struct. 48(1), 191–207 (2011)

    Article  MATH  Google Scholar 

  • Darabi, M.K., Abu Al-Rub, R.K.A., Masad, E.A., Little, D.N.: Constitutive modeling of fatigue damage response of asphalt concrete materials with consideration of micro-damage healing. Int. J. Solids Struct. 50(19), 2901–2913 (2013a)

    Article  Google Scholar 

  • Darabi, M.K., Abu Al-Rub, R.K.A., Masad, E.A., Little, D.N.: Cyclic hardening-relaxation viscoplasticity model for asphalt concrete materials. J. Eng. Mech. 139(7), 832–847 (2013b)

    Article  Google Scholar 

  • de Araújo, P.C., Soares, J.B., de Holanda, Á.S., Parente, E., Evangelista, F.: Dynamic viscoelastic analysis of asphalt pavements using a finite element formulation. Road Mater. Pavement 11(2), 409–433 (2010)

    Article  Google Scholar 

  • Deacon, J.A., Tayebali, A.A., Rowe, G.M., Monismith, C.L.: Validation of SHRP A-003A flexural beam fatigue test. In: Huber, Decker (eds.) ASTM STP 1265, Engineering Properties of Asphalt Mixtures and the Relationship to Their Performance, pp. 21–36. ASTM, West Conshohocken (1995)

    Chapter  Google Scholar 

  • Elseifi, M.A., Al-Qadi, I.L., Yoo, P.J.: Viscoelastic modeling and field validation of flexible pavements. J. Eng. Mech. 132(2), 172–178 (2006)

    Article  Google Scholar 

  • Graziani, A., Bocci, E., Canestrari, F.: Bulk and shear characterization of bituminous mixtures in the linear viscoelastic domain. Mech. Time-Depend. Mater. 18(3), 527–554 (2014a)

    Article  Google Scholar 

  • Graziani, A., Bocci, M., Canestrari, F.: Complex Poisson’s ratio of bituminous mixtures: measurement and modeling. Mater. Struct. 47(7), 1131–1148 (2014b)

    Article  Google Scholar 

  • Graziani, A., Cardone, F., Virgili, A.: Characterization of the three-dimensional linear viscoelastic behavior of asphalt concrete mixtures. Constr. Build. Mater. 105, 356–364 (2016)

    Article  Google Scholar 

  • Haj-Ali, R.M., Muliana, A.H.: Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int. J. Numer. Methods Eng. 59(1), 25–45 (2004)

    Article  MATH  Google Scholar 

  • Hondros, G.: Evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust. J. Basic Appl. Sci. 10(3), 243–268 (1959)

    Google Scholar 

  • Huang, C.W., Masad, E., Muliana, A.H., Bahia, H.: Nonlinearly viscoelastic analysis of asphalt mixes subjected to shear loading. Mech. Time-Depend. Mater. 11(2), 91–110 (2007)

    Article  Google Scholar 

  • Huang, C.W., Abu Al-Rub, R.K.A., Masad, E.A., Little, D.N., Airey, G.D.: Numerical implementation and validation of a nonlinear viscoelastic and viscoplastic model for asphalt mixes. Int. J. Pavement Eng. 12(4), 433–447 (2011)

    Article  Google Scholar 

  • Islam, M.R., Faisal, H.M., Tarefder, R.A.: Determining temperature and time dependent Poisson’s ratio of asphalt concrete using indirect tension test. Fuel 146, 119–124 (2015)

    Article  Google Scholar 

  • Jahanbakhsh, H., Karimi, M.M., Tabatabaee, N.: Experimental and numerical investigation of low-temperature performance of modified asphalt binders and mixtures. Road Mater. Pavement Des. (2016). doi:10.1080/14680629.2016.1220864

    Google Scholar 

  • Kallas, B.F.: Dynamic modulus of asphalt concrete in tension and tension-compression and discussion. J. Assoc. Asph. Paving Technol. 39, 1–23 (1970)

    Google Scholar 

  • Katicha, S.W., Flintsch, G.W., Loulizi, A.: Bimodular analysis of hot-mix asphalt. Road Mater, Pavement Des. 11(4), 917–946 (2010)

    Article  Google Scholar 

  • Khan, K.A., Muliana, A.H.: Fully coupled heat conduction and deformation analyses of visco-elastic solids. Mech. Time-Depend. Mater. 16(4), 461–489 (2012)

    Article  Google Scholar 

  • Khanal, P.P., Mamlouk, M.S.: Tensile versus compressive moduli of asphalt concrete. Transp. Res. Board 1492, 144–150 (1995)

    Google Scholar 

  • Khavassefat, P., Jelagin, D., Birgisson, B.: A computational framework for viscoelastic analysis of flexible pavements under moving loads. Mater. Struct. 45(11), 1655–1671 (2012)

    Article  Google Scholar 

  • Khavassefat, P., Jelagin, D., Birgisson, B.: The non-stationary response of flexible pavements to moving loads. Int. J. Pavement. Eng. 17(5), 458–470 (2016)

    Article  Google Scholar 

  • Kim, J., West, R.C.: Application of the viscoelastic continuum damage model to the indirect tension test at a single temperature. J. Eng. Mech. 136(4), 496–505 (2010)

    Article  Google Scholar 

  • Kim, Y., Seo, Y., King, M., Momen, M.: Dynamic modulus testing of asphalt concrete in indirect tension mode. J. Transp. Res. Board 1891, 163–173 (2004)

    Article  Google Scholar 

  • Kim, Y.R., Underwood, S., Chehab, G.R., Daniel, J.S., Lee, H.J., Yun, T.Y.: VEPCD modeling of asphalt concrete with growing damage. In: Kim (ed.) Modeling of Asphalt Concrete. ASCE Press/McGraw Hill, Reston/New York (2009)

    Google Scholar 

  • Kim, J., Lee, H.S., Kim, N.: Determination of shear and bulk moduli of viscoelastic solids from the indirect tension creep test. J. Eng. Mech. 136(9), 1067–1075 (2010)

    Article  Google Scholar 

  • Lai, J., Bakker, A.: 3D Schapery representation for non-linear viscoelasticity and finite element implementation. Comput. Mech. 18(3), 182–191 (1996)

    Article  MATH  Google Scholar 

  • Lee, H.S., Kim, J.: Determination of viscoelastic Poisson’s ratio and creep compliance from the indirect tension test. J. Mater. Civ. Eng. 21(8), 416–425 (2009)

    Article  Google Scholar 

  • Levenberg, E.: Viscoplastic response and modeling of asphalt-aggregate mixes. Mater. Struct. 42(8), 1139–1151 (2009)

    Article  Google Scholar 

  • Levenberg, E.: Viscoelastic Characterization of Asphalt Concrete in Diametral Tension–Compression. J. Mater. Civil Eng. 28(1), 04015073 (2015a)

    Article  Google Scholar 

  • Levenberg, E.: Viscoelastic tension-compression nonlinearity in asphalt concrete. J. Mater. Civil Eng. 27(12), 04015048 (2015b)

    Article  Google Scholar 

  • Li, X., Wang, L.: Simultaneous determination of bimoduli of asphalt material with single viscoelastic beam. Int. J. Pavement Res. Technol. 1(2), 57–63 (2008)

    Google Scholar 

  • Lytton, R.L., Uzan, J., Fernando, E.G., Roque, R., Hiltunen, D., Stoffels, S.M.: Development and validation of performance prediction models and specifications for asphalt binders and paving mixes. Strategic Highway Research Program (SHRP-A-357), National Research Council, Washington, DC (1993)

  • Masad, E., Huang, C.W., Airey, G., Muliana, A.: Nonlinear viscoelastic analysis of unaged and aged asphalt binders. Constr. Build. Mater. 22(11), 2170–2179 (2008)

    Article  Google Scholar 

  • Monismith, C.L., Secor, K.E.: Viscoelastic behavior of asphalt concrete pavements. Int. Conf. Struct. Des. Asph. Pavement 203(1), 476–498 (1962)

    Google Scholar 

  • Monismith, C.L., Harvey, J.T., Long, F., Weissman, S.: Tests to evaluate the stiffness and permanent deformation characteristics of asphalt/binder aggregate mixes: a critical discussion. Technical Memorandum No. TM-UCB PRC-2000-1 (2000)

  • Muraya, P.M.: Permanent deformation of asphalt mixes. PhD dissertation, TU Delft (2007)

  • Partl, M., Rösli, A.: An approximation of uniaxial creep during alternating tension-compression step loading at constant temperature. Int. J. Solids Struct. 21(3), 235–244 (1985)

    Article  Google Scholar 

  • Partl, M., Rösli, A.: A method to estimate isothermal creep under arbitrary uniaxial stress-reversals. In: Computational Mechanics, vol. 86, pp. 719–724. Springer, Berlin (1986)

    Google Scholar 

  • Perraton, D., Benedetto, H., Sauzéat, C., Hofko, B., Graziani, A., Nguyen, Q.T., Pouget, S., Poulikakos, L.D., Tapsoba, N., Grenfell, J.: 3Dim experimental investigation of linear viscoelastic properties of bituminous mixtures. Mater. Struct. 49(11), 4813–4829 (2016)

    Article  Google Scholar 

  • Priest, A.L., Timm, D.H., Barrett, W.E.: Mechanistic comparison of wide-base single vs. standard dual tire configurations. NCAT Report No. 05-03, (2005)

  • Rahmani, E., Darabi, M.K., Abu Al-Rub, R.K.A., Kassem, E., Masad, E.A., Little, D.N.: Effect of confinement pressure on the nonlinear-viscoelastic response of asphalt concrete at high temperatures. Constr. Build. Mater. 47, 779–788 (2013)

    Article  Google Scholar 

  • Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)

    Article  Google Scholar 

  • Secor, K.E., Monismith, C.L.: Viscoelastic response of asphalt paving slabs under creep loading. Highw. Res. Rec. 67, 84–97 (1965)

    Google Scholar 

  • Siddharthan, R.V., Yao, J., Sebaaly, P.E.: Pavement strain from moving dynamic 3D load distribution. J. Transp. Eng. 124(6), 557–566 (1998)

    Article  Google Scholar 

  • Underwood, B.S., Kim, Y.R.: Determination of the appropriate representative elastic modulus for asphalt concrete. Int. J. Pavement Eng. 10(2), 77–86 (2009)

    Article  Google Scholar 

  • Von Quintus, H.L., Rauhut, J.B., Kennedy, T.W.: Comparisons of asphalt concrete stiffness as measured by various testing techniques (with discussion). J. Assoc. Asph. Paving Technol. 51, 35–49 (1982)

    Google Scholar 

  • Wang, H., Al-Qadi, I.L.: Impact quantification of wide-base tire loading on secondary road flexible pavements. J. Transp. Eng. 137(9), 630–639 (2011)

    Article  Google Scholar 

  • Wang, H., Al-Qadi, I.L.: Importance of nonlinear anisotropic modeling of granular base for predicting maximum viscoelastic pavement responses under moving vehicular loading. J. Eng. Mech. 139(1), 29–38 (2012)

    Article  Google Scholar 

  • Wargo, A.D.: The development of a simple test method to measure the low temperature cracking resistance of hot mix asphalt. MSc thesis, Ohio University (2008)

  • Wei, X.X., Chau, K.T.: Three dimensional analytical solution for finite circular cylinders subjected to indirect tensile test. Int. J. Solids Struct. 50(14–15), 2395–2406 (2013)

    Article  Google Scholar 

  • Wu, H., Huang, B., Shu, X.: Characterizing viscoelastic properties of asphalt mixtures utilizing loaded wheel tester (LWT). Road Mater. Pavement 13(sup1), 38–55 (2012)

    Article  Google Scholar 

  • Yin, H., Solaimanian, M., Kumar, T., Stoffels, S.: The effect of loading time on flexible pavement dynamic response: a finite element analysis. Mech. Time-Depend. Mater. 11(3), 265–288 (2007)

    Article  Google Scholar 

  • Zahabi, M.H., Karimi, M.M., Tabatabaee, N.: Microstructure-based visco-elastoplastic continuum model of asphalt concrete. In: Canestrari, Partl (eds.) 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, pp. 37–48. Springer, Berlin (2016)

    Chapter  Google Scholar 

  • Zhang, Y., Luo, R., Lytton, R.L.: Anisotropic viscoelastic properties of undamaged asphalt mixtures. J. Transp. Eng. 138(1), 75–89 (2012)

    Article  Google Scholar 

  • Zhao, Y., Ni, Y., Wang, L., Zeng, W.: Viscoelastic response solutions of multilayered asphalt pavements. J. Eng. Mech. 140(10), 04014080 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad M. Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, M.M., Tabatabaee, N., Jahanbakhsh, H. et al. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling. Mech Time-Depend Mater 21, 383–417 (2017). https://doi.org/10.1007/s11043-016-9335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-016-9335-7

Keywords

Navigation