Anisotropic viscoelastic models in large deformation for architectured membranes

Abstract

Due to the industrial elaboration process, membranes can have an in-plane anisotropic mechanical behaviour. In this paper, anisotropic membranes elaborated with two different materials were developed either by calendering or by inducing a force in one direction during the process. Experimental tests are developed to measure the differences of mechanical behaviour for both materials in different in-plane properties: stiffness, viscoelasticity and stress-softening. A uniaxial formulation is developed, and a homogenisation by means of a sphere unit approach is used to propose a three-dimensional formulation to represent the materials behaviour. An evolution of the mechanical parameters, depending on the direction, is imposed to reproduce the anisotropic behaviour of the materials. Comparison with experimental data highlights very promising results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bažant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  2. Bergstrom, J.S., Boyce, M.C.: Constitutive modeling of the large strain time dependant behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998)

    Article  MATH  Google Scholar 

  3. Bischoff, J.E., Arruda, E.M., Grosh, K.: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech. Model. Mechanobiol. 3, 56–65 (2004)

    Article  Google Scholar 

  4. Caro-Bretelle, A., Ienny, P., Leger, R.: Constitutive modeling of a SEBS cast-calender: large strain, compressibility and anisotropic damage induced by the process. Polymer 54, 4594–4603 (2013)

    Article  Google Scholar 

  5. Chagnon, G.C., Rebouah, M., Favier, D.: Hyperelastic energy densities for soft biological tissues: a review. J. Elast. 120, 129–160 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  6. Coleman, B.D., Noll, W.: Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  Google Scholar 

  7. Diani, J., Brieu, M., Vacherand, J.M., Rezgui, A.: Directional model isotropic and anisotropic hyperelastic rubber-like materials. Mech. Mater. 36, 313–321 (2004)

    Article  Google Scholar 

  8. Diani, J., Brieu, M., Gilormini, P.: Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. Int. J. Solids Struct. 43, 3044–3056 (2006)

    Article  MATH  Google Scholar 

  9. Diani, J., Fayolle, B., Gilormini, P.: A review on the Mullins effect. Eur. Polym. J. 45, 601–612 (2009)

    Article  Google Scholar 

  10. Flynn, C., Rubin, M.B.: An anisotropic discrete fibre model based on a generalised strain invariant with application to soft biological tissues. Int. J. Eng. Sci. 60, 66–76 (2012)

    MathSciNet  Article  Google Scholar 

  11. Green, A., Rivlin, R.: The mechanics of non-linear materials with memory: part I. Arch. Ration. Mech. Anal. 1, 1–21 (1957)

    Article  MATH  Google Scholar 

  12. Green, M.S., Tobolsky, A.V.: A new approach for the theory of relaxing polymeric media. J. Chem. Phys. 14, 87–112 (1946)

    Article  Google Scholar 

  13. Haslach, H.W.: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech. Model. Mechanobiol. 3, 172–189 (2005)

    Article  Google Scholar 

  14. Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A, Solids 21, 441–463 (2002)

    Article  MATH  Google Scholar 

  15. Huber, A., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000)

    Article  MATH  Google Scholar 

  16. Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41, 3833–3848 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  17. Machado, G., Chagnon, G., Favier, D.: Induced anisotropy by the Mullins effect in filled silicone rubber. Mech. Mater. 50, 70–80 (2012)

    Article  Google Scholar 

  18. Miehe, C., Göktepe, S.: A micro–macro approach to rubber-like materials. Part ii: the micro-sphere model of finite rubber viscoelasticity. J. Mech. Phys. Solids 53, 2231–2258 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  19. Natali, A.N., Carniel, E.L., Gregersen, H.: Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med. Eng. Phys. 31, 1056–1062 (2009)

    Article  Google Scholar 

  20. Peña, E., Martins, P., Mascarenhasd, T., Natal Jorge, R.M., Ferreira, A., Doblaré, M., Calvo, B.: Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. 4, 275–283 (2011)

    Article  Google Scholar 

  21. Petiteau, J.-C., Verron, E., Othman, R., Sourne, H., Sigrist, J.-F., Barras, G.: Large strain rate-dependent response of elastomers at different strain rates: convolution integral vs. internal variable formulations. Mech. Time-Depend. Mater. 17, 349–367 (2013)

    Article  Google Scholar 

  22. Quaglini, V., Vena, P., Contro, R.: A discrete-time approach to the formulation of constitutive models for viscoelastic soft tissues. Biomech. Model. Mechanobiol. 3, 85–97 (2004)

    Article  Google Scholar 

  23. Rebouah, M., Chagnon, G.: Extension of classical viscoelastic models in large deformation to anisotropy and stress softening. Int. J. Non-Linear Mech. 61, 54–64 (2014a)

    Article  MATH  Google Scholar 

  24. Rebouah, M., Chagnon, G.: Permanent set and stress softening constitutive equation applied to rubber like materials and soft tissues. Acta Mech. 225, 1685–1698 (2014b)

    MathSciNet  Article  MATH  Google Scholar 

  25. Rebouah, M., Machado, G., Chagnon, G., Favier, D.: Anisotropic Mullins softening of a deformed silicone holey plate. Mech. Res. Commun. 49, 36–43 (2013)

    Article  Google Scholar 

  26. Rey, T., Chagnon, G., Le Cam, J.-B., Favier, D.: Influence of the temperature on the mechanical behavior of two silicone rubbers above crystallization temperature. Polym. Test. 32, 492–501 (2013)

    Article  Google Scholar 

  27. Rey, T., Chagnon, G., Favier, D., Le Cam, J.-B.: Hyperelasticity with rate-independent microsphere hysteresis model for rubberlike materials. Comput. Mater. Sci. 90, 89–98 (2014)

    Article  Google Scholar 

  28. Treloar, L.R.G.: The elasticity of a network of long chain molecules (I and II). Trans. Faraday Soc. 39, 36–64 (1943); 241–246

    Article  Google Scholar 

  29. Vassoler, J.M., Reips, L., Fancello, E.A.: A variational framework for fiber-reinforced viscoelastic soft tissues. Int. J. Numer. Methods Eng. 89, 1691–1706 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  30. Verron, E.: Questioning numerical integration methods for microsphere (and microplane) constitutive equations. Mech. Mater. 89, 216–228 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the French National Research Agency Program ANR-12-BS09-0008-01 SAMBA (Silicone Architectured Membranes for Biomedical Applications).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory Chagnon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rebouah, M., Chagnon, G. & Heuillet, P. Anisotropic viscoelastic models in large deformation for architectured membranes. Mech Time-Depend Mater 21, 163–176 (2017). https://doi.org/10.1007/s11043-016-9324-x

Download citation

Keywords

  • Viscoelasticity
  • Sphere unit model
  • Anisotropy
  • Stress-softening