Mechanics of Time-Dependent Materials

, Volume 21, Issue 2, pp 163–176 | Cite as

Anisotropic viscoelastic models in large deformation for architectured membranes

Article

Abstract

Due to the industrial elaboration process, membranes can have an in-plane anisotropic mechanical behaviour. In this paper, anisotropic membranes elaborated with two different materials were developed either by calendering or by inducing a force in one direction during the process. Experimental tests are developed to measure the differences of mechanical behaviour for both materials in different in-plane properties: stiffness, viscoelasticity and stress-softening. A uniaxial formulation is developed, and a homogenisation by means of a sphere unit approach is used to propose a three-dimensional formulation to represent the materials behaviour. An evolution of the mechanical parameters, depending on the direction, is imposed to reproduce the anisotropic behaviour of the materials. Comparison with experimental data highlights very promising results.

Keywords

Viscoelasticity Sphere unit model Anisotropy Stress-softening 

References

  1. Bažant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986) MathSciNetCrossRefMATHGoogle Scholar
  2. Bergstrom, J.S., Boyce, M.C.: Constitutive modeling of the large strain time dependant behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998) CrossRefMATHGoogle Scholar
  3. Bischoff, J.E., Arruda, E.M., Grosh, K.: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech. Model. Mechanobiol. 3, 56–65 (2004) CrossRefGoogle Scholar
  4. Caro-Bretelle, A., Ienny, P., Leger, R.: Constitutive modeling of a SEBS cast-calender: large strain, compressibility and anisotropic damage induced by the process. Polymer 54, 4594–4603 (2013) CrossRefGoogle Scholar
  5. Chagnon, G.C., Rebouah, M., Favier, D.: Hyperelastic energy densities for soft biological tissues: a review. J. Elast. 120, 129–160 (2015) MathSciNetCrossRefMATHGoogle Scholar
  6. Coleman, B.D., Noll, W.: Arch. Ration. Mech. Anal. 13, 167–178 (1963) CrossRefGoogle Scholar
  7. Diani, J., Brieu, M., Vacherand, J.M., Rezgui, A.: Directional model isotropic and anisotropic hyperelastic rubber-like materials. Mech. Mater. 36, 313–321 (2004) CrossRefGoogle Scholar
  8. Diani, J., Brieu, M., Gilormini, P.: Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. Int. J. Solids Struct. 43, 3044–3056 (2006) CrossRefMATHGoogle Scholar
  9. Diani, J., Fayolle, B., Gilormini, P.: A review on the Mullins effect. Eur. Polym. J. 45, 601–612 (2009) CrossRefGoogle Scholar
  10. Flynn, C., Rubin, M.B.: An anisotropic discrete fibre model based on a generalised strain invariant with application to soft biological tissues. Int. J. Eng. Sci. 60, 66–76 (2012) MathSciNetCrossRefGoogle Scholar
  11. Green, A., Rivlin, R.: The mechanics of non-linear materials with memory: part I. Arch. Ration. Mech. Anal. 1, 1–21 (1957) CrossRefMATHGoogle Scholar
  12. Green, M.S., Tobolsky, A.V.: A new approach for the theory of relaxing polymeric media. J. Chem. Phys. 14, 87–112 (1946) CrossRefGoogle Scholar
  13. Haslach, H.W.: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech. Model. Mechanobiol. 3, 172–189 (2005) CrossRefGoogle Scholar
  14. Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A, Solids 21, 441–463 (2002) CrossRefMATHGoogle Scholar
  15. Huber, A., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000) CrossRefMATHGoogle Scholar
  16. Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41, 3833–3848 (2004) MathSciNetCrossRefMATHGoogle Scholar
  17. Machado, G., Chagnon, G., Favier, D.: Induced anisotropy by the Mullins effect in filled silicone rubber. Mech. Mater. 50, 70–80 (2012) CrossRefGoogle Scholar
  18. Miehe, C., Göktepe, S.: A micro–macro approach to rubber-like materials. Part ii: the micro-sphere model of finite rubber viscoelasticity. J. Mech. Phys. Solids 53, 2231–2258 (2005) MathSciNetCrossRefMATHGoogle Scholar
  19. Natali, A.N., Carniel, E.L., Gregersen, H.: Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med. Eng. Phys. 31, 1056–1062 (2009) CrossRefGoogle Scholar
  20. Peña, E., Martins, P., Mascarenhasd, T., Natal Jorge, R.M., Ferreira, A., Doblaré, M., Calvo, B.: Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. 4, 275–283 (2011) CrossRefGoogle Scholar
  21. Petiteau, J.-C., Verron, E., Othman, R., Sourne, H., Sigrist, J.-F., Barras, G.: Large strain rate-dependent response of elastomers at different strain rates: convolution integral vs. internal variable formulations. Mech. Time-Depend. Mater. 17, 349–367 (2013) CrossRefGoogle Scholar
  22. Quaglini, V., Vena, P., Contro, R.: A discrete-time approach to the formulation of constitutive models for viscoelastic soft tissues. Biomech. Model. Mechanobiol. 3, 85–97 (2004) CrossRefGoogle Scholar
  23. Rebouah, M., Chagnon, G.: Extension of classical viscoelastic models in large deformation to anisotropy and stress softening. Int. J. Non-Linear Mech. 61, 54–64 (2014a) CrossRefMATHGoogle Scholar
  24. Rebouah, M., Chagnon, G.: Permanent set and stress softening constitutive equation applied to rubber like materials and soft tissues. Acta Mech. 225, 1685–1698 (2014b) MathSciNetCrossRefMATHGoogle Scholar
  25. Rebouah, M., Machado, G., Chagnon, G., Favier, D.: Anisotropic Mullins softening of a deformed silicone holey plate. Mech. Res. Commun. 49, 36–43 (2013) CrossRefGoogle Scholar
  26. Rey, T., Chagnon, G., Le Cam, J.-B., Favier, D.: Influence of the temperature on the mechanical behavior of two silicone rubbers above crystallization temperature. Polym. Test. 32, 492–501 (2013) CrossRefGoogle Scholar
  27. Rey, T., Chagnon, G., Favier, D., Le Cam, J.-B.: Hyperelasticity with rate-independent microsphere hysteresis model for rubberlike materials. Comput. Mater. Sci. 90, 89–98 (2014) CrossRefGoogle Scholar
  28. Treloar, L.R.G.: The elasticity of a network of long chain molecules (I and II). Trans. Faraday Soc. 39, 36–64 (1943); 241–246 CrossRefGoogle Scholar
  29. Vassoler, J.M., Reips, L., Fancello, E.A.: A variational framework for fiber-reinforced viscoelastic soft tissues. Int. J. Numer. Methods Eng. 89, 1691–1706 (2012) MathSciNetCrossRefMATHGoogle Scholar
  30. Verron, E.: Questioning numerical integration methods for microsphere (and microplane) constitutive equations. Mech. Mater. 89, 216–228 (2015) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marie Rebouah
    • 1
    • 2
  • Gregory Chagnon
    • 1
    • 2
  • Patrick Heuillet
    • 3
  1. 1.Universite Grenoble Alpes, TIMC-IMAGGrenobleFrance
  2. 2.CNRS, TIMC-IMAGGrenobleFrance
  3. 3.LRCCPVitry sur SeineFrance

Personalised recommendations